Posts Tagged ‘heat energy’

Forms of Heat Energy – Sensible

Sunday, July 7th, 2013
      In our house the whistle of a tea kettle is heard throughout the day, no matter the temp outside.  So what produces that familiar high pitched sound?

sensible heat power plant boiler

      When a tea kettle filled with room temperature water, say about 70°F, is heating on the stove top, the heat energy from the burner flame will transfer to the water in the kettle and its temperature will steadily rise.  This heat energy that is absorbed by the water before it begins to boil is known as sensible heat in thermodynamics.  To read more about thermodynamics, click on this hyperlink to one of my previous blog articles on the topic.

      So, why is it called sensible heat? It’s so named because it seems to make sense.  The term was first used in the early 19th Century by some of the first engineers who were working on the development of boilers and steam engines to power factories and railways.  Simply stated, it’s sensible to assume that the more heat you add to the water in the kettle, the more its temperature will rise.

      So how high will the temperature rise?  Is there a point when it will cease to rise?  Good questions.  We’ll answer them next week, along with a discussion on another form of heat energy known as the latent heat of vaporization.


Transistors – Voltage Regulation Part XIV

Monday, October 22nd, 2012

     As we’ve come to know through this series of blogs, all electronic components pose some degree of internal resistance to the electric current flowing through them.  This resistance results in electrical energy being converted into heat energy, heat which poses potential problems to sensitive components like electronic circuit boards.  If things get hot enough, components fail and fires may ignite. 

     To address these issues engineers design circuits with resistors whose job it is to limit the current flowing to electrical components.  In this article we’ll see how a limiting resistor protects a Zener diode from this fate, allowing it to continue doing its job of regulating voltage.    

     In our last blog we applied Ohm’s Law to our regulated power supply circuit, which makes use of a Zener diode.  See Figure 1.power supply

Figure 1


     Ohm’s Law gave us the following equation to determine the amount of current, IPS, flowing from the unregulated power supply portion, through the current limiting resistor RLimiting, and making its way into the rest of the circuit:

IPS = (VUnregulatedVZener) ÷ RLimiting

     We learned last week that for the circuit to work, the voltage of the unregulated power supply portion of the circuit, VUnregulated, must be greater than the Zener voltage, VZener.

     Looking at the equation above, we see that the voltage difference is divided by RLimiting, the value of the limiting resistor in the circuit.  This limiting resistor is there to constrain the current flowing to the Zener diode, allowing the diode to keep things under control within the circuit. 

     Basic mathematical principles hold that if a smaller number is divided by a bigger number, the resulting answer is an even smaller number.  Applying this principle to the equation above, if RLimiting is a big number, then IPS must be a smaller number.  On the other hand the smaller RLimiting gets, the bigger IPS becomes. 

     So what does it take for our circuit to fail?  Remove the limiting resistor as shown in Figure 2 and the value for RLimiting disappears.  In other words, RLimiting becomes zero.

zener diode with no limiting resistor

Figure 2


     In this case our Ohm’s Law equation becomes:

IPS = (VUnregulatedVZener) ÷ 0 =

     The resulting answer is said to go to infinity, or , as it is represented mathematically.  In other words, without a limiting resistor being employed within our circuit, IPS will become so large it will overwhelm the diode’s current handling capacity and lead to circuit failure. 

     Next time we’ll go over some advantages and disadvantages of this Zener diode voltage regulating circuit, and why the disadvantages outweigh the advantages for many applications.


Coal Power Plant Fundamentals – The Generator

Monday, March 7th, 2011
     When I was a kid I remember how cool it was to have a headlight on my bike.  Unlike the headlights that the other kids had, mine was not powered with flashlight batteries.  The power came from a little gadget with a small wheel that rode on the front tire.  As I pedaled along, the tire’s spinning caused the small wheel to spin, and voila, the headlight bulb came to life.  Little did I know that this gadget was a simple form of electrical generator, and of course I was oblivious to the fact that a similar device, albeit on a much larger scale, was being used at a nearby power plant to send electricity to my home.

     Over the last few weeks we learned how a coal fired power plant transforms chemical energy stored in coal into heat energy and then into mechanical energy which enables a steam turbine shaft to spin.  We’ll now turn our attention to the electrical generator.  It’s responsible for performing the last step in the energy conversion process, that is, it converts mechanical energy from the steam turbine into the desired end product, electrical energy for our use.  It represents the culmination in energy’s journey through the power plant, the process by which energy contained in a lump of coal is transformed into electricity.   

    To show how this final energy conversion process works, let’s look at Figure 1, a simplified illustration of an electrical generator.

Figure 1 – A Basic Electrical Generator

     You’ll note that the generator in our illustration has a shaft with a loop of wire attached to it.  When the shaft spins, so does the loop.  The shaft and wire loop are placed between the north (N) and south (S) poles of a horseshoe magnet.  It’s a permanent magnet, so it always has invisible lines of magnetic flux traveling between its two poles.  These magnetic lines of flux are the same type as the ones created by kids’ magnets, when they play with watching paperclips jump up to meet the magnet.  The properties of magnets are not completely understood, even to adults who work with them every day.  And what could be more mysterious than the fact that as the shaft and wire loop spin through the lines of magnetic flux in the generator, an electric current is produced in the wire loop.

     Now, this current that’s flowing through the spinning wire loop is of no use if we can’t channel it out of the generator.   The wire loop is spinning vigorously, so you can’t directly connect the ends of the loop to stationary wires.  A special treatment is required.  Each end of the loop is connected to a slip ring.  A part called a “brush” presses against each slip ring to make electrical contact.  The electrical current then flows from the loop through the spinning slip rings, through the brushes, and into the stationary wires.   So, if, for example, a light bulb is connected to the other end of the stationary wires, this completes an electric circuit through which current can flow.  The light bulb will glow as long as the generator shaft keeps spinning and the wire loop keeps passing through the magnetic lines of flux from the magnet.

     So we see that the key to the whole energy conversion process is to have movement between magnetic lines of flux and a loop of wire.  As long as this movement occurs, the electricity will flow.  This basic principle is the same in a coal fired power plant, but the electrical generator is far more complicated in construction and operation than shown here.  My Coal Power Plant Fundamentals seminar goes into far greater detail on this and other aspects of electricity generation, but what I have shared with you above will give you a basic understanding of how they operate.

     That concludes our journal with coal through the power plant.  This series of blogs has, you will remember, presented a simplified version of the complex material presented in my teaching seminars.  Next week we’ll branch off, taking a look at why electrical wires come in different thicknesses.   



Coal Power Plant Fundamentals – “Big Coal”

Sunday, February 27th, 2011

     We’ve been talking about coal fired power plants for some time now, and it’s always good to introduce third party information on subject matter in order to gain the most from the discussion.  What follows is an excerpt of an interesting book review on the subject of coal consumption which appeared in the New York Times:

There is perhaps no greater act of denial in modern life than sticking a plug into an electric outlet. No thinking person can eat a hamburger without knowing it was once a cow, or drink water from the tap without recognizing, at least dimly, that its journey began in some distant reservoir. Electricity is different. Fully sanitized of any hint of its origins, it pours out of the socket almost like magic.

In his new book, Jeff Goodell breaks the spell with a single number: 20. That’s how many pounds of coal each person in the United States consumes, on average, every day to keep the electricity flowing. Despite its outdated image, coal generates half of our electricity, far more than any other source. Demand keeps rising, thanks in part to our appetite for new electronic gadgets and appliances; with nuclear power on hold and natural gas supplies tightening, coal’s importance is only going to increase. As Goodell puts it, “our shiny white iPod economy is propped up by dirty black rocks.”

     To read the entire article, follow this link:

A locomotive crane unloading coal from railcars at a power plant in the late 1930s.

     Next week we’ll continue our regular series, following energy’s journey through the power plant.


Coal Power Plant Fundamentals – The Steam Turbine

Sunday, February 20th, 2011

     When I was a kid I didn’t have video games or cable TV to help me occupy my time.  Back then parents tended to be frugal, and the few games I had were cheap to buy and simple in operation, like the plastic toy windmill I’d play with for hours on end.  All I had to do to make it spin was take a deep breath, pucker my lips together, fill my cheeks with breath, then blow hard into the windmill blades.  Its spin was fascinating to watch.  Little did I know that as an adult I would come to work with a much larger and complex version of it, in the form of a power plant’s steam turbine.

     You see, when you trap breath within bulging cheeks and then squeeze your cheek muscles together, you actually create a pressurized environment.  This air pressure buildup transfers energy from your mouth muscles into the trapped breath within your mouth, so that when you open your lips to release the breath through your puckered lips, the pressurized energy is converted into kinetic energy, a/k/a the energy of movement.  The breath molecules flow at high speed from your lips to the toy windmill’s blades, and as they come into contact with the blades their energy is transferred to them, causing the blades to move.  A similar process takes place in the coal power plant, where steam from a boiler takes the place of pressurized breath and a steam turbine takes the place of the toy windmill.

     If you recall from my previous article, the heat energy released by burning coal is transferred to water in the boiler, turning it to steam.   This steam leaves the boiler under great pressure, causing it to travel through pipe to the steam turbine, as shown in Figure 1.

Figure 1 – A Basic Steam Turbine and Generator In A Coal Fired Power Plant

     At its most basic level the inside of a steam turbine looks much like our toy windmill, of course on a much larger scale, and it is very appropriately called a “wheel.”  See Figure 2.  

Figure 2 – A Very Basic Steam Turbine Wheel

     The wheel is mounted on a shaft and has numerous blades.  It makes use of the pressurized steam that has made its way to it from the boiler.  This steam has ultimately passed through a nozzle in the turbine that is directed towards the blades on the wheel.  This is the point at which heat energy in the steam is converted into kinetic energy.  The steam shoots out of the nozzle at high speed, coming into contact with the blades and transferring energy to them, which causes the turbine shaft to spin.  The turbine shaft is connected to a generator, so the generator spins as well.  Finally, the spinning generator converts the mechanical energy from the turbine into electrical energy.

     In actuality, most coal power plant steam turbines have more than one wheel and there are many nozzles.  The blades are also more numerous and complex in shape in order to maximize the energy transfer from the steam to the wheels.  My Coal Power Plant Fundamentals seminar goes into far greater detail on this and other aspects of steam turbines, but what I have shared with you above will give you a basic understanding of how they operate. 

     So to sum it all up, the steam turbine’s job is to convert the heat energy of steam into mechanical energy capable of spinning the electrical generator.  Next time we’ll see how the generator works to complete the last step in the energy conversion process, that is, conversion of mechanical energy into electrical energy.


Coal Power Plant Fundamentals – Combustion

Sunday, February 13th, 2011
     Ever have a small child threaten to hold his breath until he passes out and he actually managed to do it?  It’s not that unusual.  And if his body were prevented from acting in self preservation, that is, taking in breaths while he was unconscious, leading to his eventual awakening, he would die.  While the human body can survive about a month without eating and three days without water, under normal conditions it can survive only a matter of minutes without breathing.  Power plants, too, require oxygen to function, and this process is called combustion.

      Human lungs, along with the diaphragm which works to expand and release the lung cavities, enable our bodies to breathe in air, then expel the waste product, carbon dioxide.  Oxygen is needed to metabolize, that is burn, our food, enabling the food cells’ energy to be absorbed by our bodies and converted into energy to live.  Like us, coal power plants need to breathe in oxygen in order to convert coal’s latent energy into a usable form.

     Previously we learned how coal is fed to a coal mill where it is pulverized into a fine powder.  This powder is then sucked out of the mill by the exhauster and blown through a serpentine path of pipes leading to the burners on the furnace.  The burners will then act upon the coal, combining it with the oxygen in our atmosphere to create a chemical reaction capable of releasing coal’s energy in the form of heat.  All this activity looks to a bystander like a massive, sustained fire in the furnace.  See Figure l.   

Figure 1 – Coal Power Plant Combustion

     The boiler is contained within the furnace and is situated so it is exposed to fire from the combustion process.  Heat energy from the fire transfers into the water in the boiler, much like when you boil water for tea in a kettle on your stovetop.  If you’ve ever boiled water, you know that once it gets hot enough it will turn into steam, and the same for our furnace boiler.  The steam emitting from the boiler will cause a turbine-generator to spin, and the end result will be electricity for our use.  In the simple diagram of Figure 1,  waste products from the combustion process, like carbon dioxide, go up the smoke stack and are released into the atmosphere.  Incidentally, this is the same type of carbon dioxide that we exhale from our bodies when we breathe.  

     Please keep in mind that Figure 1 is a very simplified diagram.  In reality waste products leaving the furnace go through various pollution control devices where most pollutants are removed before they reach the smoke stack.  These details, and many more, are the type of information that would be covered during my training seminar, Coal Power Plant Fundamentals.    

     Next time we’ll learn how the heat energy in steam is converted into mechanical energy capable of spinning a turbine generator to make electricity.



Coal Power Plant Fundamentals

Sunday, January 23rd, 2011

     Several years ago I was asked by power producers within the electric utility industry to write and then present a training course on the subject of coal power plant fundamentals.  The finished product was a two day introductory course on the energy transformation process within a coal fired plant.

     Since that time my seminar, entitled Coal Power Plant Fundamentals, has been presented to a variety of audiences, including Mirant Corporation, Platte River Power Authority, and Integrys Energy Group, Inc.  Audience makeup has been diverse and has included equipment manufacturers, mining companies, power industry consultants, and regulatory agencies.

     This seminar, which I continue to present today in meeting rooms across the country, covers all major systems in a typical power plant, from coal handling when the coal first enters the plant, to its eventual end destination, the electrical switch yard which facilitates power transmission to customers.  My Power Point presentation is embellished with ample illustrations, including photographs that I have taken during the course of my career and diagrams which I created using CAD, or Computer Aided Drawing software, one of which is featured below.  In addition to the overhead slides, I provide a 150-page bound book which is distributed to seminar attendees.  They use it to both follow along with my lecture and have a source of refresher material to take home with them.  I’ve been told that having my illustrations in front of them makes a world of difference towards their understanding of the subject matter.

     The unique thing about my course is that it focuses on the simplified presentation of complex engineering concepts, much like my blogs do.  Of course it always helps to have an engineering background or scientific background of sorts, but I wrote the course to accommodate understanding of the subject matter by individuals without any technical background.  Accountants, salespersons, administrative staff, plant operating and maintenance workers, and journalists have all found the course to be easy to follow, interesting, and informative.

     So how do you get electricity from coal?  To answer this question and give you a sampling of my seminar material let’s take a look at Figure 1. 

Figure 1 – The Coal Power Plant Energy Transformation Process

     Following along from left to right, the coal is first burned in order to transform the chemical energy which it contains into heat energy.  That heat energy is then absorbed by water inside a nearby boiler, where it is converted into steam.  The heat energy in the steam flows through a pipe into a steam turbine where it is again transformed, this time into mechanical energy that enables the turbine shaft to spin.  The mechanical energy in the turbine is then transmitted by its shaft, enabling it to turn an electrical generator.  And, finally, the mechanical energy is transformed by the generator into electrical energy for our usage.

     Simple process, right?  Well, maybe, maybe not.  My illustration certainly helped to simplify things, but there are a lot of details that were purposely omitted so as not to “muddy the waters.”  It’s those details which have the potential to make things a lot more complicated, and next week we’ll begin to take a closer look at some of them.  


Coal Power Plants, Far From Perfect

Sunday, July 18th, 2010

     Did you know that even a perpetual motion machine will eventually come to a stop due to uncontrollable factors?

     Well, uncontrollable factors are at play in power plants, too.   If you recall from our last article, heat rate is industry jargon for gauging how efficiently a coal-fired power plant is operating.  We learned that heat rate can be affected by things like missing thermal insulation on pipes and equipment.  Missing insulation is, of course, a thing that is under human control and easily corrected, but there are some things that affect heat rate that we just can’t do anything about.  They’re called, appropriately enough, uncontrollable factors.  

     Uncontrollable factors exist because anything devised and made by fallible humans who are beholden to the myriad laws of the universe cannot be 100 percent efficient.  At their best utility coal fired power plants have an overall efficiency of between 30 and 40 percent.  That means 60 to 70 percent of the energy available in the coal gets lost in the process of generating electricity.  A terrible waste, right?  And yet there’s nothing we can do to trim these losses until improvements in the present level of technology take place.  Just as our ability to track microbes is dictated by the strength and accuracy of our magnifying equipment, so are we hampered by the tools we have at our disposal to deal with inefficiencies such as energy losses. 

     So where does this energy get lost due to uncontrollable factors?  The first and probably most obvious place to look is the smoke stack.  Energy is also lost in three other ways: friction between equipment parts, auxiliary power consumption, and in a piece of equipment known as a condenser.  Let’s look at each. 

     In the most basic of terms, when coal is introduced into a power plant boiler it is combined with air and burned.  This burning process releases heat energy, but it also forms gases that contain nitrogen and compounds like carbon monoxide and carbon dioxide. There’s also some water vapor formed by moisture in the coal and air.  These gases and vapor absorb some of the heat energy released.  To keep the combustion process going the gases and vapor must be removed from the boiler by powerful fans and sent up the smoke stack.   Now, boilers are designed to absorb much of the heat energy from the gases and vapor that make their way to the stack, but they cannot possibly absorb it all.  The result is that a significant amount of heat escapes up the smoke stack into the atmosphere along with the gases. 

     Friction between parts is present everywhere in a power plant.  It exists in the bearings on the shafts of motors, pumps, and steam turbines, slowing them down and hindering their operating capacity.  Friction also exists where moving water and steam are present, impeding their ability to flow through piping systems.  There is even friction working against the steam as it flows through parts in the turbine.  Extra energy has to be expended to overcome this friction.  This is energy that could be used to generate electricity. 

     Now at some point in your life you’ve probably heard it said, “You need money to make money,” and this is very true.  It takes a certain investment of resources to produce a profit-making enterprise. This investment principle holds true for the making of electricity, too.  The bottom line is you need electricity to make electricity.  Specifically, you have to use significant amounts of electricity to power machinery that is essential to move coal, air, combustion gases, and water through the process of making electricity in the power plant.  This is called auxiliary power.  It’s the electricity siphoned off by the various pieces of equipment in a power plant in its quest to generate electrical energy to be sold to customers.  

     Another major factor at play in uncontrollable energy losses is in a piece of equipment integral to the very function of power plants: the condenser.  It comes into play when water is boiled to make steam which then travels through the turbine, spinning its electrical generator and creating electric power.  Unfortunately even the most efficient of steam turbines cannot use 100% of the heat energy coming at it from the steam.  

     You see, after steam leaves the turbine, it’s turned back into water by a condenser so it can be sent back to the boiler to be turned into steam again.  One of the reasons that this is done is so that the boiler does not have to be continuously filled with fresh, purified water.  Water purification is necessary to keep minerals, seaweed, fish scales, and other nasty things from clogging up and damaging the boiler and steam turbine, and purified water is not as readily available as, say, lake water.  The condenser acts as a heat exchanger that is hooked up to the steam turbine exhaust.  It has tubes inside of it in which cold water flows, water which is drawn in from a nearby body of water, most often a river or lake.  As steam blows across the outside of the cold water tubes in the condenser, it gives up its remaining heat energy and condenses into water again, then it is returned to the boiler to repeat its journey.  The river water within the tubes of the condenser flows back into the river, carrying with it the heat energy removed from the steam. 

     That wraps up our discussion about coal power plant efficiency.  Next time we’ll discuss a new topic: coal fired power plant furnace explosions.


Coal Power Plant Efficiency

Sunday, July 11th, 2010

     Is there any price a man dying of thirst in the desert would not pay for a tall glass of cold water?  What is the point at which Americans will decide they can do without heat, refrigerators, electric lights?  My neighbor refuses to run the air conditioner, even when it’s 90 degrees and 90 percent humidity.  They have obviously made the choice to sweat and be uncomfortable in their homes rather than pay high utility bills. 

     Most of us are concerned with the environment, but when times are hard like they are now many of us become more concerned with our pocketbooks.  Just as we need to make our financial ends meet, so do energy suppliers.  Without a certain level of profit, their service to us will decline, and regular, dependable delivery of their precious commodities to us will suffer.  If they were to go out of business, what then?  Reading by candlelight may be romantic for a night or two, but nights on end?  

     Let’s consider the energy provided by coal-fired power plants, for example.  They’re in the electric utility business, and they provide us with the lion’s share of our energy.  To keep a handle on operating costs, power plant engineers monitor how many British Thermal Units (BTUs) of heat energy are going into the power generation process versus how many kilowatt-hours of electricity are coming out.  

     What’s a BTU and what does it matter to us?  Well, it’s the amount of heat energy your kitchen stove uses to raise the temperature of one pint of water by one degree Fahrenheit.  As for a kilowatt-hour, that’s a thousand watts of power produced over the space of an hour– enough to light ten 100 watt light bulbs.  Now that we’ve explained the key term, we can explore the notion of heat rate, terminology very important to efficient power plant operation.  Heat rate is simply the ratio of BTUs to kilowatt-hours.

     So what’s the importance of monitoring heat rate?  For one thing, in order to get the most bang for your buck you want to keep the heat rate as low as possible.  When the heat rate is high, you’re burning more coal than you have to because you’re wasting heat energy.  This results in higher electricity costs to the consumer.  This is exactly the situation at play when low sulfur coals are used as compared to the better burning coals of yester-year.  

     So where does the wasted heat energy go if it isn’t being converted into electrical energy?  For one thing, it can be lost through steam and water leaks in the power plant piping system.  There are other losses too.  Another way to lose heat energy is when thermal insulation is missing from pipes, causing heat to escape into the atmosphere.  The opposite side of inefficiency is presented by the problem of too much heat energy building up, unable to be transferred to the steam.  This is the result if ash is allowed to accumulate inside the boiler, acting as a thermal insulator.  The heat has nowhere to go except up the smoke stack and into the atmosphere. 

     Needless to say it’s important to keep heat rate as low as possible by keeping power plant equipment insulated and in good repair.  But there are some things that affect heat rate that we just can’t do anything about, they’re known as “uncontrollable factors,” and we’ll learn about them next week.


Dynamic Brakes

Monday, May 31st, 2010

     Last week we looked at how a mechanical brake stopped a rotating wheel by converting its mechanical energy, namely kinetic energy, into heat energy.  This week, we’ll see how a dynamic brake works.

     Chances are you have directly benefited by a dynamic braking system the last time you rode in an elevator.  But, to understand the basic principle behind an elevator’s dynamic brake system, let’s first take a look at the electric braking system in Figure 1 below. 

Figure 1 – A Simple Electric Braking System

     Here the brake consists of an electric generator wired via an open switch to an electrical component called a resistor.  The weight is attached to a cable that is wound around a pulley on the generator’s shaft.   As the weight freefalls, the cable unwinds on the pulley, causing the pulley to turn the generator’s shaft.

     Unlike last week’s mechanical brake which required a good deal of effort to employ, a dynamic braking system requires very little.  All that needs to be done is to close a switch as shown in Figure 2 below.  When the switch is closed, an electrical circuit is created where the resistor gets connected to the generator.  The resistor does as its name implies: it resists (but doesn’t stop) the electrical current flowing through it from the generator.  As the electrical current fights its way through the resistor to get back to the generator, the resistor gets hot like an electric heater.  This heat is dissipated to the cooler surrounding air.  At the same time, the weight begins to slow down in its descent.  But how is this happening?

     The electric braking system can be thought of as an energy conversion process.  We start out with the kinetic, or motion energy, of the freefalling weight.  This kinetic energy is transmitted to the electrical generator by the cable, which spins the generator’s shaft as the cable unwinds.  Electrical generators are machines that convert kinetic energy into electrical energy.  This energy travels from the electric generator through wires and a closed switch to the resistor.  In the process the resistor converts the electrical energy into heat energy.  So, kinetic energy is drawn from the falling weight through the conversion process and leaves the process in the form of heat.  As the falling weight is drained of kinetic energy, it slows down. 

 Figure 2 – Applying the Electric Brake   

     Okay, now let’s get back to dynamic brakes on elevators.  An elevator is attached by a cable to a hoist that is powered by an electric motor.  When it’s time to stop at the desired floor, the automatic control system disconnects the elevator’s electric motor from its power source and turns the motor into a generator.  The generator is then automatically connected to a resistor like the one shown in the electric brake above.  The kinetic energy of the moving elevator is converted by the generator into electrical energy.  The resistor converts the electrical energy into heat energy which is then dissipated into the surrounding environment.  The elevator slows down in the process because it’s being robbed of kinetic energy.  When the dynamic brake slows the elevator down enough, a mechanical brake is introduced, taking over to bring the elevator to a complete stop.  This two-fold process serves to reduce wear and tear on the mechanical brake’s parts, lengthening the operational lifespan of the system as a whole.

     Next time, we’ll tie everything together and show how mechanical and dynamic brakes work together in a diesel locomotive.