Posts Tagged ‘industrial ventilation’

Industrial Ventilation – Local Exhaust Ventilation Exhaust Stack Design

Sunday, June 5th, 2011
     Imagine how nasty it would be if some of the dirty water draining into your sink was allowed to leak back into the fresh water coming from your faucet.  Yuck!  Now imagine looking up at a factory’s exhaust stack and noticing that it’s located just inches from the intake pipe, the one that’s supposed to suck in fresh air for the workers inside.  Even a novice can see that this is an unhealthy situation.  Some of the airborne contaminants exiting the building are sure to be sucked right back in.

     Last week we discussed the importance of location with regard to intake and output pipes, an integral part of a local exhaust ventilation system.  The placement of these stacks is governed by various industry standards that present guidelines to insure that ventilation systems work properly and protect the health of people in the workplace.  These guidelines have been determined by scientific study to equate to a safe minimal standard, as determined by a body of experts that have come together to form a consensus committee on the subject. 

     Generally speaking, the standards set recommend that exhaust stacks extend upward a minimum of 10 feet above the highest point of the roof.  As for discharge velocity, the rate at which contaminated air blows out of the stack, the standards recommend that operation take place at a minimum of 3,000 feet per second.  Separation distances between exhaust stacks and air intakes vary according to dilution requirements set out in the standards, but basically the separation must be great enough so that airborne contaminants leaving the exhaust stack get safely diluted by outside air so they will pose no hazard should they ever reach the air intake ducts.  This combination of height, velocity, and distance factors allows contaminated air to be dispersed far enough from the building to avoid downdrafts created by wind passing over the roof, thereby preventing undesirable consequences like the smoke that re-entered my house through its fireplace on windy days.

     One device that is sometimes incorporated into the scenario to keep workplace air clean is the inclusion of rain caps on the roof.  These look like conical shaped hats, and they’re supposed to keep rain from falling into the exhaust stack.  It seems like a good idea, but they unfortunately do not work very well.  To begin with, they don’t do a good job of keeping out rain, especially when it’s driven by strong winds.  Another drawback is that they can actually direct contaminants exiting from exhaust stacks back down to the roof and into the building’s fresh air intake ducts.  Yet another drawback of rain caps is that they often result in the local exhaust ventilation system fan working harder than it has to   because the contaminated air slams into the rain cap, thereby slowing its rate of exit and causing it to lose velocity energy.  This means a fan must be selected to work harder to compensate for the resistance.

     Well, that’s it for our series on local exhaust ventilation systems.  Next time we’ll switch gears and discuss how those outlet covers in your home with the cute little red and black buttons work to protect you against death by electrocution.  They’re usually positioned near water sources and are known as “Ground Fault Circuit Interrupters,” or GFCI.  I’ll be discussing topics like this on an upcoming show to be featured on The Discovery Channel, where I’ll be acting as a subject matter expert.  The series, titled “Curious and Unusual Deaths,will cover a wide range of potential threats that are present in our everyday environments.

_____________________________________________

Industrial Ventilation – Local Exhaust Ventilation

Sunday, April 10th, 2011
     My wife often says I’m the worst cook she knows.  This doesn’t really bother me too much, because she’s the best cook I know, and she keeps me well fed.  But there are times that I have to fend for myself in the kitchen, and this sometimes results in a foul smelling mess plastered all over the stove.  Lucky for me we have a nice exhaust hood, and it usually manages to suck out the odor before my wife gets home.

     Local exhaust ventilation systems, like the vent over my stove, work much the same way in an industrial setting, albeit on a larger scale.  This type of ventilation system gets its name because its action is quite specific, localized to contain exhaust air from a particular area.  They’re routinely placed as close as possible to the source of contaminants, and they are able to work quickly to capture and expel chemical vapors, dusts, and fumes, before they spread.  This type of ventilation is effective for other reasons, too, because it helps keep down heating and cooling costs.  Instead of treating an entire building for ventilation issues, the problem can be nipped in the bud at its source.  In many situations, local exhaust ventilation is preferred over dilution ventilation systems for these very reasons.

     A basic local exhaust ventilation system is comprised of a duct, a fan, and a hood as shown in Figure 1 below. One end of the duct is attached to the intake of the fan.  The other end of the duct is attached to the hood.  The duct can be rigid or flexible.  The hood is positioned in the workplace near the source of contaminants.

Figure 1 – Basic Local Exhaust Ventilation System

     This local exhaust ventilation system operates by much the same principle as the one generally governing the movement of liquids and gases.  If you’re a regular reader of this blog, you’ll remember me writing that liquids and gases always flow from areas of higher pressure to those of lower pressure.  Well, the air within the room has pressure principles at play as well, and the air within a given work area is at atmospheric pressure.  When the fan is introduced into the scenario, a vortex is created within the duct which is less than that of the atmospheric pressure in the room.  This difference in pressures causes the room air to flow into the ventilation duct along with its contaminants. The room air and contaminants flow out through the ventilation system, where they are then exhausted outside of the building.

      But because room air is being drawn into the ventilation system, provisions must be made to supply enough replacement air.  Without the proper ratio of air moving in to that moving out, a ventilation system will not work properly.  In other words, the suction created by the local ventilation system could cause the pressure in the room to drop below atmospheric pressure.  This could cause the higher atmospheric pressure outside the room to bear down on doors, making them difficult to open.  Worse yet, contaminants could back up into the room, causing workers to get sick.

     Now that we’ve covered the basics of local exhaust ventilation, we can move on to its five constituent elements and a discussion of their design.  We’ll do that next week. 

_____________________________________________

Industrial Ventilation – Dilution Ventilation

Sunday, April 3rd, 2011
     If you’re a fan of the new hit HBO series, Boardwalk Empire, then you know a lot about the effects of Prohibition.  But did you know that Prohibition is responsible for the creation of mixed drinks?  Until then, people drank their liquor straight.  Then along came Prohibition, mob rule, and the desire to keep the booze, including some with questionable origins, flowing.  This booze didn’t taste so good, and the addition of a sugary beverage to it, that is, diluting it with soda or juice, made it a lot easier to go down.  By the time Prohibition was repealed in 1933, the mixed drink had taken a firm foothold in American society.

       Most adults are aware of the fact that liquor, in excess, is toxic to the body.  Too much of it, and the liver, which acts as a filtration device, itself becomes toxic.  When that happens, poor health will follow.  The same principle applies to air within a building.  If it becomes thick with toxic fumes or potentially flammable vapors, indoor air quality will suffer.  But if you infuse fresh air into the environment, the toxic load is diluted, making the environment habitable and safe.  This addition of fresh air is called, appropriately enough, dilution ventilation.

     Now, the easiest way to create a dilution ventilation system is to open a window.  Trouble is there often isn’t enough natural airflow to do much good.  But if you step up the effort by introducing a mechanical ventilation system, complete with blowers and ductwork, the need to crack open a window becomes obsolete.  By exchanging bad air for good and introducing a continual flow of fresh air, toxicity is diluted and its effects are minimized, much like the bathtub gin of Prohibition was improved by the addition of soda.  The chance of fire or explosion is reduced as well.

     There are however limits to what dilution ventilation can accomplish.  If contaminants are highly toxic or extremely flammable, then this type of ventilation system is not going to do much good.  This is a situation where extremely high air flows would be required, and this is often impractical both from a cost and comfort standpoint.  Imagine having to work inside a wind tunnel?  In situations like these a local exhaust ventilation system is better suited to do the job, and we’ll see how those work next week.

_____________________________________________

Industrial Ventilation

Sunday, March 27th, 2011
     On a hot, sticky day, what price would you pay for a cool breeze?  Imagine for a moment that it’s 90 degrees in the shade and humidity is 85%.  There are few human beings that wouldn’t consider this uncomfortable weather, although I have some die hard neighbors who rarely close their windows during the summer to engage the air conditioning, a rather recent modern convenience.  My mom told me stories of how it was common in the 1940s for entire Chicago neighborhoods to head to Lake Michigan, spread a blanket, and sleep on the beach to keep cool on the hottest nights.  As for myself, I remember being really happy when Dad broke down and finally purchased a window air unit.  It was as big as a small refrigerator and took two men to lift.  It was loud and drew so much power it frequently “blew the fuse.”  It was so much nicer when central air conditioning came along a few years later and we could finally retire that old clunker.

      Ultimately, it’s ventilation that makes air conditioning work, the principle here being a continuous circulation of air, exchanging hot for cooled.  If you’ll remember, hot air gives up its heat to coils containing coolant, and the newly cooled air is released back into the room. 

     In addition to cooling, another major function of ventilation is to remove odors and refresh the air.  Everyone likes a fresh smelling home, but even more importantly, proper ventilation reduces the concentration of contaminants in the air, things which tend to make us sick, like mold.  That’s why many states’ building codes require whole house air ventilation systems to be installed in new homes. 

     In industrial settings ventilation performs the same functions, but it’s necessary for other reasons as well.  Industrial facilities often house processes that create airborne toxins and other contaminants.  These byproducts of manufacturing can be dangerous if allowed to collect unchecked within the confines of a building.  Air containing certain concentrations of contaminants, such as vapors emitted by paints and solvents, can ignite, resulting in fire or explosion.  For safety of both workers and equipment, fresh air must displace air contaminated with fumes and dust.

     There are three types of ventilation that can be found in industrial facilities.  These include indoor air quality ventilation, dilution ventilation, and local exhaust ventilation.  Indoor air quality ventilation provides freshly heated or cooled air to buildings as part of the normal heating, ventilating and air conditioning system, much like we have in our own homes.  Dilution ventilation gets its name from the fact that it dilutes contaminated air by displacement, the blowing in of clean air and exhausting of dirty.  The last type of ventilation, local exhaust ventilation, captures contaminated emissions at or near the source and exhausts them directly outside.  Depending on the type of industrial application one, two, or all three of these ventilation types may be employed to keep air quality safe.

     Next week we’ll discuss dilution ventilation in detail, followed by local exhaust ventilation, and we’ll gain a better understanding of how they are used to protect worker health and safeguard property.

_____________________________________________