Posts Tagged ‘steam temperature’

Enthalpy and the Potential for More Work

Monday, November 18th, 2013

      Last time we learned how enthalpy is used to measure heat energy contained in the steam inside a power plant.  The higher the steam pressure, the higher the enthalpy, and vice versa, and we touched upon the concept of work, or the potential for a useful outcome of a process.  Today we’ll see how to get the maximum work out of a steam turbine by attaching a condenser at the point of its exhaust and making the most of the vacuum that exists within its condenser.

      Let’s revisit the equation introduced last time, which allows us to determine the amount of useful work output:

W = h1h2

      Applied to a power plant’s water-to-steam cycle, enthalpy h1 is solely dependent on the pressure and temperature of steam entering the turbine from the boiler and superheater, as contained within the purple dashed line in the diagram below.

Electric utility power plant expert witness

      As for enthalpy h2, it’s solely dependent on the pressure and temperature of steam within the condenser portion of the water-to-steam cycle, as shown by the blue dashed circle of the diagram.

      Next week we’ll see how the condenser, and more specifically the vacuum inside of it, sets the platform for increased energy production, a/k/a work.

________________________________________

Desuperheating in the Steam Turbine

Monday, September 2nd, 2013

      Last time we learned that the addition of a superheater to the electric utility power plant steam cycle provides a ready supply of high temperature steam, laden with heat energy, to the turbine, which in turn powers the generator.   But this isn’t its only job.   One of the superheater’s most important functions is to regulate the ongoing process of desuperheating that takes place as the turbine consumes heat energy.   To understand this, let’s see what takes place if the superheater were to be removed from its position between the boiler and turbine.

Steam Turbine Engineering Expert

Figure 1

 

      Without the superheater, the only available remaining source of sensible heat energy to the turbine would come from the meager amount present in phase C steam as shown in Figure 1.   If you’ll recall from a past blog, the sensible heat energy contained in superheated steam is the best source of energy for a steam turbine, because it’s able to keep it operating most efficiently.

      As the turbine consumes the heat energy in phase C, starting at point 3 and continuing to point 2, the steam it’s consuming is in the process of desuperheating, as evidenced by the downward slope between the two points.   Desuperheating is an engineering term which means that as sensible heat energy is removed from the steam due to its use by the turbine, there will be a resulting drop in steam temperature.   And if this process were to continue without the compensatory function provided by the addition of a superheater to the steam cycle, the steam’s temperature would eventually return to mere boiling point, at point 2.   This is an undesirable thing.

      With the steam’s temperature at boiling point, the only remaining source of heat energy to the turbine is the latent heat energy of phase B.   This heat energy will lead to an undesirable circumstance for the operation of our power hungry turbine as we will see next week.

________________________________________

Superheating, Part I

Monday, August 19th, 2013

      Last time we learned that our power plant boiler as presently designed doesn’t do a good job of producing ample amounts of superheated steam, the kind of steam that turbines need to spin and power generators.   During the process of superheating the more heat energy that’s added to the steam in our boiler, the higher its temperature becomes.   However, our boiler can only produce a limited amount of superheated steam as it stands now.

Engineering expert witness power plant

      So how do we get more heat energy into the superheated steam?   Take a look at the illustration below for the solution to the problem.

coal fired power plant expert witness

      You’ll note a prominent new addition to our illustration.   It’s called a superheater.

      The superheater performs the function of raising the temperature of the steam produced in our boiler to the incredibly high temperatures required to run steam turbines and electrical generators down the line, as explained in my blog on steam turbines.   The superheater adds more heat energy to the steam than the boiler can alone.

      In fact, the amount of heat energy in the superheated steam produced with our new design is proportional to the amount of electrical energy that power plant generators produce.   Its addition to our setup will result in more energy supplied to the turbine, which in turn spins the generator.   The result is more electricity for consumers to use and a more efficiently operating power plant.

      But inefficiency isn’t the only problem addressed by the superheater.   We’ll see what else it can do next week.

________________________________________