Archive for August, 2018

The Depositor’s Industrial Control System

Friday, August 24th, 2018

    Last time we saw how a solenoid valve operates a pneumatic actuator in a jelly depositor in a food manufacturing plant.   The operation was manual.   In other words, an electrical switch had to be thrown by hand each time to get the solenoid to work.   This can be rather tedious, when you consider the thousands of pastries that must be filled on each production run.   Now, let’s see how the solenoid can be automatically turned on and off by an industrial control system.

    In food manufacturing plants, industrial control systems are typically made up of programmable logic controllers, otherwise known as “PLCs.”   The PLC is an industrial computer that is used to control equipment like conveyor belts, motors, pumps, robots, and solenoid valves.   The PLC is connected to Input/Output Modules, or “I/O Modules.”

    The I/O modules act as an interface between the computer and the equipment in the plant.   As such, they contain a means to connect electrically to the computer and the plant equipment.   In the case of our solenoid valve, the PLC computer program would turn the valve’s solenoid on and off.   Whether it is turned on or off depends on the computer program’s timing and/or external sensors and how it feeds in conveyor belt/pastry position data to the PLC.    The result is the automatic depositing of jelly filling as each pastry passes by the depositor nozzle.

The Depositor’s Industrial Control System

The Depositor’s Industrial Control System

   

    That wraps things up for our blog series on depositors.   Next time we’ll move on to a new topic.

Copyright 2018 – Philip J. O’Keefe, PE

Engineering Expert Witness Blog

____________________________________

 

The Solenoid Valve Operates a Pneumatic Actuator

Monday, August 6th, 2018

    Last time, we learned how a solenoid valve operates to create different compressed air flow paths through passageways within its valve body.   These different air flow paths are created by opening and closing an electrical switch to de-energize and energize a solenoid mounted on the valve body.   Now let’s see how engineers use a solenoid valve in a food manufacturing plant to move a depositor’s pneumatic actuator piston back and forth with compressed air pressure.

    Consider the pneumatic actuator on the depositor’s scotch yoke.   With the solenoid valve’s electrical switch opened, the valve’s spool is pushed up in the valve body by a spring to create air flow paths between Ports A and E and Ports D and B.   If compressed air is fed into Port A and the left side of the pneumatic actuator’s cylinder is connected to Port E, then the air pressure moves the actuator’s piston to the right.   But, for the actuator piston to move freely to the right, the right side of the cylinder is connected to Port D on the valve body.   As the piston moves to the right, it forces air out of the right side of the cylinder, through Port D, through the valve body, and out through Port B to be vented to the atmosphere.

The De-Energized Solenoid Valve Operates a Pneumatic Actuator

The De-energized Solenoid Valve Operates a Pneumatic Actuator

    With the solenoid valve’s electrical switch closed, the spool is pushed down in the valve body by the solenoid, to create air flow paths between Ports A and D and Ports E and C.   If compressed air is fed into Port A and the right side of the pneumatic actuator’s cylinder is connected to Port D, then the air pressure moves the actuator’s piston to the left.   But, for the actuator piston to move freely to the left, the left side of the cylinder is connected to Port E.   As the piston moves left, air is forced out of the left side of the cylinder, through Port E, and vented to the atmosphere through Port C.

 The Energized Solenoid Valve Operates a Pneumatic Actuator

The Energized Solenoid Valve Operates a Pneumatic Actuator

    So, in review, opening the solenoid valve’s electrical switch causes the pneumatic actuator piston to move right.  Closing the switch causes the piston to move left.   But there is a problem with this setup.   Operating an electrical switch by hand to deposit jelly filling on thousands of pastries can get tiring after a while.   Next time, we’ll see how the valve’s solenoid can be automatically turned on and off by an industrial control system.

Copyright 2018 – Philip J. O’Keefe, PE

Engineering Expert Witness Blog

____________________________________