Crushed fingers, amputations, burns, blindness, these are all too common undesirable occurrences involving moving machinery. Eliminating the risk of such accidents is an integral part of the engineering design process, where risk assessment goes hand and hand with industry standards in order to provide adequate machine safeguards and protection to operators as well as bystanders. Machine safeguards fall into three basic categories: Guards, Devices, and Distance. Guards are physical barriers that are added to machines with the goal of keeping body parts, clothing, etc., separated from potentially hazardous areas. An example would be a metal cage surrounding drive belts and pulleys. Guards can also serve to keep material fragments and debris from flying out of machines while in operation, such as when an enclosure is built around the grinding wheel of a bench grinder. Devices can consist of automatic controllers, often connected to sensors on machine componets. These controllers use a form of “safety interlock logic” to monitor the operating state of machinery. They must act quickly and automatically to stop the normal operation of a machine if they sense that an undesirable object, say a person’s forearm, is in danger of entering a hazardous area. Controllers can be in the form of hard-wired electromechanical relays, embedded microprocessors, or programmable logic controllers (PLCs). Their sensors can include electrical switches embedded in floor mats or mounted on movable guards, incorporated into control handle grips, or linked to an access door latch. Still other sensors are more elaborate, using more sophisticated methods to maintain safety, such as photoelectric devices known as laser curtains. These act by spreading beams of light across an opening which may be a gateway to a dangerous area. If the beam is broken by an object, the controller takes appropriate action and renders the machinery inoperable. Distance safeguards operate as you would infer them to, by designing machinery so that hazardous areas are kept a great enough distance from body parts, etc., so as to eliminate any danger of them being drawn into an unsafe area. An example of this factor at work would be when machinery is developed so that moving gears and other potential hazards are kept far out of the reach of someone by virtue of their overall design. Sometimes even the best machine safeguard designs can be rendered ineffective after a piece of machinery is put into actual operation. The reasons for this are varied, from poor maintenance of equipment, to lack of training for operating personnel, to inadequate supervision of workers, or perhaps the machine has been modified to operate outside the parameters of its design capacity. Whatever the reason, people can be put at risk for serious injury and even death if machine safeguards are bypassed, eliminated, and defeated. _________________________________________________________________ |
Posts Tagged ‘machine safeguards’
Machine Safety, Operator Safety, And Keeping Those Fingers
Sunday, September 27th, 2009Tags: controller, device, distance, engineering design, engineering expert witness, forensic engineering, forensic inspection, guard, machine design, machine guards, machine safeguards, machine safety, operator safety, personal injury, PLC, product liability, risk analysis, safety barrier, safety interlock logic, safety interlocks, sensor
Posted in Engineering and Science, Expert Witness, Forensic Engineering, Personal Injury, Product Liability, Professional Malpractice | Comments Off on Machine Safety, Operator Safety, And Keeping Those Fingers