Achieving Mechanical Advantage Through Torque

      Last time we saw how gear train ratios allow us to change the speed of the driven gear relative to the driving gear.   Today we’ll extend this concept further and see how gear trains are used to amplify the mechanical power output of small motors and in so doing create a mechanical advantage, an advantage made possible through the physics of torque.

      Below is an ordinary electric drill.   Let’s see what’s inside its shell.

Power tool engineering expert witness

      There’s a whole lot of mechanical advantage at work here, giving the drill’s small motor the ability to perform big jobs.   A motor and gear train are housed within the drill itself.   The motor shaft is coupled to the chuck shaft via the gear train, and by extension, the drill bit.   A chuck holds the drill bit in place.

      It’s the drill’s gear train that provides the small motor with the mechanical advantage necessary for this hand-held power tool to perform the big job of cutting through a thick steel plate.   If the gear train and its properly engineered gear ratio weren’t in place and the chuck’s shaft was connected directly to the motor shaft, the motor would be overwhelmed and would stall or become damaged.   Either way, the work won’t get done.

      To understand how operations like these can be performed, we must first familiarize ourselves with the physics concept of torque.   Torque allows us to analyze the rotational forces acting upon rotating objects, such as gears in a gear train and wrenches on nuts and bolts.   Manipulating torque allows us to achieve a physical advantage when rotating objects around a pivot point.   Let’s illustrate this by using a wrench to turn a nut.

mechanical engineering expert witness

      The nut is fastened to the bolt with threads, interconnecting spiral grooves formed on both the inside of the nut and the outside of the bolt.   A wrench is used to loosen and tighten the nut by rotating it on its mating threads.   The nut itself rotates about a pivot point which lies at its center.

mechanical fastener expert

      When you use your arm to manipulate the wrench you apply force, a force which is transmitted at a distance from the pivot point.   This in turn creates a torque on the nut.   In other words, torque is a function of the force acting upon the handle relative to its distance from the pivot point at the center of the nut.

      Torque can be increased by changing one or both of its acting factors, force and distance.   We’ll see how next time when we examine the formula for torque and manipulate it so that a weak arm can loosen even the tightest nut.


Tags: , , , , , , , , , , , , , , , , , , , , , ,

Comments are closed.