Posts Tagged ‘cutter head’

See How a Centrifugal Clutch Works With Animation

Monday, December 16th, 2013

      Ever wondered if a running horse lifts all four of its feet off the ground at the same time?   Leland Stanford, an industrialist and horseman of the late 19th Century did, and he hired photographer Eadweard Muybridge to find out.   Muybridge’s series of 24 photographs of Stanford’s horse, Sallie Gardner, came to be known as Sallie Gardner at a Gallop and is regarded to be an early example of silent film.

courtroom demonstratives

      The Muybridge photos were viewed at increased speed on a zoopraxiscope, a device he invented in 1879.   A precursor to modern movie projectors, it projected a series of independent photographs as a moving image through the use of multiple cameras shooting the subject at different points in time.   In this way it was disclosed that yes, indeed, there were moments when all four of a galloping horse’s feet hover in mid air.   Today’s moving images are displayed at between 24 and 300 fps, depending on the application.

      Muybridge’s experiment proved that not only are moving images more engaging than static ones, they are also more explicit, able to convey information still images are not.   Take for example this series of stills of a centrifugal clutch assembly.

centrifugal clutch expert

      Are you able to tell by looking at these two-dimensional images how a clutch works?   How as the engine speeds up the spinning shoes move out and make contact with the clutch housing, this pressure causing the entire assembly to spin?   Unless you’re familiar with clutches, probably not.

      Now here’s the same clutch brought to life through animation:

      In today’s fast paced, internet-laden society, people’s attention spans are shorter than ever, and their demands to be visually engaged are high.   It’s been proven that holding a modern day viewer’s attention for more than three seconds is a difficult task.   This truth is evident in the courtroom as well, where trial attorneys are obliged to increase the production value of evidence presented in order to win over juries, and animation is becoming their tool of choice.

      What held true more than 100 years ago still holds true today:  Nothing tells a story like a moving image.

      Next time we’ll switch gears, quite literally, to understand how a series of gears work together to power machinery.

________________________________________

Note: If you are viewing this blog article in an email and the animation video does not appear, then click on this link to view the article with your web browser.      

________________________________________

Mechanical Power Transmission – Centrifugal Clutch Shoe Wear

Sunday, June 3rd, 2012

     My first car was a used 1963 Dodge 880.   It was reliable for the most part, but one day when I stepped on the brake in a supermarket parking lot, nothing happened.  I began to roll down an incline, and I struggled to steer around the maze of parked cars in the lot.  After what seemed to be an eternity I managed to navigate my way out of the lot into an adjacent cornfield.  The soft ground and corn stalks finally brought me to a stop.  I later discovered that the reason my brakes failed is because their linings had completely worn away.

     Like the brakes in cars, centrifugal clutch shoes also have linings as shown in Figure 1.  Brake linings are typically made of a rough, high friction materials, such as ceramic compounds. These materials are bonded to the brake shoes, or in the case of clutches, to the clutch shoes.  When centrifugal force comes into play, pressing the clutch shoes against the inside wall of the clutch housing, the roughness of the linings provides a good grip, preventing slippage between the shoes and the housing.

clutch shoe lining

Figure 1

 

     As we learned in previous articles, slip between the clutch shoes and clutch housings can create problems.  In our grass trimmer for example, we learned that slippage reduces the amount of power the engine can effectively transmit to the cutter head.  It also tends to produce a lot of heat.  This heat can adversely effect the clutch springs and cause clutch failure.

     Although the high friction lining of the clutch shoes prevents most slippage, it can still occur, as when the throttle is depressed and engine speed increases beyond idle.  There is some slipping as the clutch shoes first engage with the clutch housing, and it will continue until the engine speed increases to the point where centrifugal force causes the clutch shoes to firmly press into the clutch housing.

     Slippage also occurs when gasoline powered tools are subjected to operating stress.  Figure 2 shows two views of a chainsaw.  The first view is complete, the second shows the chain and clutch housing in isolation.

chainsaw and saw chain

Figure 2

 

     With the engine housing removed, we see that the saw chain is connected to a sprocket located on the centrifugal clutch housing.  This sprocket is similar to those that engage the chains on bicycle wheels.

     Now suppose someone decides to use the chainsaw to cut a green, sap-filled log.  To make matters worse, let’s suppose the chainsaw has a dull saw chain.  If you’ve ever tried doing this, you know that the sticky, sappy wood will eventually gum up the chain and stop it from moving.  Since the chain is connected to the clutch housing, it stops as well. However the clutch shoes, which are driven by the engine, keep trying to move the gummed-up clutch housing, because the engine’s power is enough to overcome some of the friction.  The result is that the shoes slip uselessly inside the housing.

     Over time, continued slippage will cause the clutch shoes’ high friction lining to wear away.  Once the lining is gone the clutch shoes will slip excessively, even when the gasoline powered tool is being employed to perform the lightest task.  That’s because slipping prevents a good portion of the engine’s power from being transmitted to the cutting head.

     That’s it for our series on centrifugal clutches.  Next we’ll be discussing transistors, how they’re used in electronic controls to switch things on and off and perform other functions. 

____________________________________________

Mechanical Power Transmission – The Centrifugal Clutch Feels The Heat

Sunday, May 27th, 2012

     Ever get out of bed on a cold winter morning and feel as stiff as a ladder?  Summer’s heat doesn’t have the same effect on aging joints as winter’s chill, and many retirees have been motivated to move into warmer climates because of it.

     Heat can change the properties of metals like steel, too.  By properties, I mean qualities such as hardness and stiffness–where hardness relates to steel’s ability to resist wear and denting, while stiffness relates to its ability to resist a force that is trying to bend it.

     Obviously, if things get hot enough, say in the thousands of degrees Fahrenheit, steel will soften and eventually melt into a blob of glowing liquid.  At lower temperatures the change will be less dramatic, but its atomic structure will be undergoing change nonetheless.  Varying temperatures cause atoms to become energized, causing them to move around within their atomic structure.  Depending on how quickly things cool back down, the iron and carbon atoms that make up the steel can end up in different locations, causing a permanent change.  The steel could end up softer or harder.  For example, slow cooling hot steel in air makes it softer, while rapid cooling, such as when you submerge hot steel quickly into cold oil, makes it harder.

     How does heat play a part in the ongoing discussion of the centrifugal clutch in a grass trimmer?  Well, friction between the shoes and housing generates heat as a result of centrifugal force.  Clutch springs are made of steel, which is hard and resistant to bending.  But during operation they may heat up to hundreds of degrees, then slowly cool down again when the grass trimmer is shut off.  Without getting into a complex explanation of metallurgy, this slow cooling makes the steel in the springs softer, and with time they will lose their stiffness and weaken.

     Over time the springs become so weak they are unable to overcome the centrifugal force acting on the clutch shoes, causing the clutch to fail at its task of disengaging the cutter head from the engine at idle speed.  In other words, as soon as the engine is started, the cutter head will rapidly begin to spin.   With these conditions in place, the cutter head poses a threat to anything or anyone making contact with it. 

     Next time we’ll look at another cause of centrifugal clutch failure, that is, component wear due to friction between the clutch shoes and clutch housing. 

____________________________________________

centrifugal clutch springs damaged by overheating

Mechanical Power Transmission – The Centrifugal Clutch and Friction

Sunday, May 20th, 2012

     I got my first 10-speed bike when I was in high school.  It was nice, except for one nasty hangup, the brakes were always going out of adjustment.  Once it did this at the worst of times, when I was going down a steep hill.  I squeezed hard on the brake handles, and nothing happened.  The bike started to go out of control in its ascent down the hill, and in desperation I took my feet off the pedals and pressed the soles of my shoes as hard as I could into the road surface.  To my relief my emergency measure was effective.  The harder I pressed into the pavement, the less my shoes slipped, and the more the bike slowed down.  I had good rubber treads on the sneakers I was wearing that day, and the friction between the soles of my shoes and the surface of the pavement was strong enough to stop my runaway descent.  Something very similar occurs during the operation of a centrifugal clutch.

     If you recall from previous articles in this series, when the clutch mechanism spins faster than engine idle speed, the centrifugal force acting upon the clutch shoes overcomes the tension in the springs.  This causes the clutch shoes to make contact with the clutch housing.  But although there is contact, the clutch shoes will initially slip somewhat.  That is, the clutch housing and cutter head won’t spin at exactly the same speed when a faster spin is first employed, although the slip between the clutch shoes and housing decreases as engine speed increases. 

     Faster speed means there’s more centrifugal force at play, forcing the shoes harder against the drum of the clutch housing.  The increase in centrifugal force makes the shoes move tighter and tighter against the housing, and this causes an increase in friction.   Eventually the engine speed will increase to full throttle, the point where the shoes are pressed into the housing so hard there is no more slip.  The cutter head will then turn at the same rate as the engine, and the engine’s power will be fully transmitted to the cutter head, allowing you to trim grass effectively.

     Friction is a double edged sword.  On the one hand it reduces slip between the clutch shoes and clutch housing.  On the other, the friction between the slipping shoes and clutch housing generates a lot of heat, particularly if the grass trimmer is cutting thick grass.  We’ll see how that heat impacts the clutch mechanism components next week. 

____________________________________________

centrifugal clutch friction

 

Mechanical Power Transmission – The Centrifugal Clutch Powers Up

Sunday, May 6th, 2012

     Energy, or power, requires direct contact to transfer.  In most cases.  One notable exception to this rule of physics that I know of is the martial art of Tai Chi.  But when we’re talking golf, for example, if you don’t’ make contact with that ball, it ain’t gonna fly, no matter how many swings you take.

     Last time we looked at a gas powered trimmer’s engine, centrifugal clutch mechanism, clutch housing, and cutter head and how they’re assembled together.  With the centrifugal clutch assembled into the grass trimmer, let’s refer to Figure 1 to see what it looks like when we start the engine and run it at low, idle speed.

centrifugal clutch assembly

Figure 1

 

     Figure 1 represents a view from the back of the clutch housing, revealing the centrifugal clutch housing inside.  At idle speed there are only a few millimeters of space between the blue clutch mechanism shoes and red clutch housing, but the important point is that they’re not touching the clutch housing.  Because they’re not, the engine’s power can’t be transferred from the engine to the clutch housing, and it remains stationary, that is, the clutch housing doesn’t spin.  Since the grass trimmer’s cutter head is coupled to the clutch housing, it also remains stationary.

     Figure 2 shows what happens from the same viewpoint when we press the throttle trigger, making the engine spin at operational speed.

centrifugal clutch power transmission

Figure 2

 

     With the engine spinning faster the centrifugal force, Fc, acting upon the clutch shoes overcomes the tension of the clutch mechanism springs, and the shoes move away from each other along the green boss.  They will eventually make contact with the clutch housing, enabling power from the engine to transfer to the clutch housing via the centrifugal clutch mechanism.  The clutch housing and cutter head spin along with the engine, and we can now cut grass.

     When we let go of the engine’s throttle trigger it again slows to idle speed, the shoes no longer touch the insides of the clutch housing, and the housing and cutter head stop spinning, as we saw in Figure 1.

     Next time we’ll talk about centrifugal clutch failures, things that can go wrong with them and keep them from operating properly.

____________________________________________

 

Mechanical Power Transmission – Putting the Centrifugal Clutch Together

Sunday, April 29th, 2012

     I’ve never been one to enjoy table top puzzles, yet I love to examine the way mechanical things fit together.  Manipulating parts to see how they interrelate to form an operational system is a pastime I very much enjoy.  In fact, I spend many evenings at my work bench doing just this.  I often become so engrossed in the activity I forget what time it is.  The result is yet another night without TV.  So sad…

     Last week we looked at how a centrifugal clutch mechanism operates when it’s coupled to a gasoline engine shaft spinning at idle speed, and then we depressed the engine throttle trigger to speed things up.  Let’s now introduce a new component called the clutch housing to see how it interfaces with the clutch mechanism to drive the cutter head in a grass trimmer.

centrifugal clutch housing

Figure 1

 

     The clutch housing shown in Figure 1 resembles a rather short cup.  One end is open, the other closed.

     Figure 2 shows the closed end of the clutch housing connected to the cutter shaft’s coupling.  On the cutter shaft coupling resides a ball bearing which enables the clutch housing to both spin freely and act as a support for the clutch housing.  The open end of the clutch housing allows the clutch mechanism to fit neatly inside.

centrifugal clutch assembly

Figure 2

 

     Next time we’ll put the assembly shown in Figure 2 into operation.  First we’ll examine how the centrifugal clutch mechanism and clutch housing operate with the engine at idle speed, then compare that to the engine operating at actual cutting speed.

____________________________________________

 

Mechanical Power Transmission – The Centrifugal Clutch in Operation

Sunday, April 22nd, 2012
     Just the other day I unexpectedly experienced the effects of centrifugal force while  driving home from the grocery store.  The checker had packed my entire order into one bag, making it top heavy.  Then en route someone cut me off at an intersection, and I had to make a sharp turn to avoid a crash.  During this maneuver centrifugal force came into play, forcing my grocery bag out of its centered position on the front seat next to me.  It lurched into the passenger’s door, fell over, and spilled its contents onto the floor.  Fortunately the eggs didn’t get smashed.

     In previous articles we identified the component parts of a centrifugal clutch mechanism and learned how centrifugal force makes objects spinning in a circular path about a fixed point move outward.  We can now explore what happens when we couple a centrifugal clutch mechanism to the engine of a grass trimmer.

     Figure 1 depicts the spinning clutch mechanism of a gas engine when it’s just been started and is operating at a slow idle speed.

centrifugal clutch mechanism

Figure 1

 

     Like the red ball in my previous article on centrifugal force, the blue centrifugal clutch shoes each have a mass m.  They spin around a fixed point P, situated at the center of the yellow engine shaft coupling.  Point P is located a distance r from the center of each shoe.  The shoes in motion have a tangential velocity V, and in accordance with Sir Isaac Newton’s Law of Centrifugal Force, the force Fc acts upon each shoe, causing them to want to pull out from the center of the mechanism, away from the fixed point.  Since idle speed is rather slow, however, the centrifugal force exerted upon the shoes isn’t strong enough to overcome the tension of the two springs and the coils connecting them remain coiled, holding the shoes tightly in position on the green boss.

     So what happens when we press the throttle trigger on the gas engine and cause the engine to speed up?  See Figure 2.

clutch shoes

Figure 2

 

     Figure 2 shows the clutch mechanism spinning at an increased velocity.  The tangential velocity V increases, and according to Newton’s law, the centrifugal force Fc acting on the clutch shoes increases as well.  The force is so strong that it overcomes the tension in the springs and they extend.  The clutch shoes are caused to move out and away from fixed point P, as well as from each other, traveling along the ends of the boss.

     When we remove our finger from the throttle trigger, the engine will slow down and return to idle speed.  The centrifugal force will decrease and the springs will pull the shoes back towards fixed point P.  The mechanism will return to its previous state, as shown in Figure 1.

     Next time we’ll insert the centrifugal clutch mechanism into the clutch housing to see how mechanical power is transmitted from the engine to the cutter head in our grass trimmer.

____________________________________________