Posts Tagged ‘clutch spring’

Mechanical Power Transmission – Centrifugal Clutch Shoe Wear

Sunday, June 3rd, 2012

     My first car was a used 1963 Dodge 880.   It was reliable for the most part, but one day when I stepped on the brake in a supermarket parking lot, nothing happened.  I began to roll down an incline, and I struggled to steer around the maze of parked cars in the lot.  After what seemed to be an eternity I managed to navigate my way out of the lot into an adjacent cornfield.  The soft ground and corn stalks finally brought me to a stop.  I later discovered that the reason my brakes failed is because their linings had completely worn away.

     Like the brakes in cars, centrifugal clutch shoes also have linings as shown in Figure 1.  Brake linings are typically made of a rough, high friction materials, such as ceramic compounds. These materials are bonded to the brake shoes, or in the case of clutches, to the clutch shoes.  When centrifugal force comes into play, pressing the clutch shoes against the inside wall of the clutch housing, the roughness of the linings provides a good grip, preventing slippage between the shoes and the housing.

clutch shoe lining

Figure 1

 

     As we learned in previous articles, slip between the clutch shoes and clutch housings can create problems.  In our grass trimmer for example, we learned that slippage reduces the amount of power the engine can effectively transmit to the cutter head.  It also tends to produce a lot of heat.  This heat can adversely effect the clutch springs and cause clutch failure.

     Although the high friction lining of the clutch shoes prevents most slippage, it can still occur, as when the throttle is depressed and engine speed increases beyond idle.  There is some slipping as the clutch shoes first engage with the clutch housing, and it will continue until the engine speed increases to the point where centrifugal force causes the clutch shoes to firmly press into the clutch housing.

     Slippage also occurs when gasoline powered tools are subjected to operating stress.  Figure 2 shows two views of a chainsaw.  The first view is complete, the second shows the chain and clutch housing in isolation.

chainsaw and saw chain

Figure 2

 

     With the engine housing removed, we see that the saw chain is connected to a sprocket located on the centrifugal clutch housing.  This sprocket is similar to those that engage the chains on bicycle wheels.

     Now suppose someone decides to use the chainsaw to cut a green, sap-filled log.  To make matters worse, let’s suppose the chainsaw has a dull saw chain.  If you’ve ever tried doing this, you know that the sticky, sappy wood will eventually gum up the chain and stop it from moving.  Since the chain is connected to the clutch housing, it stops as well. However the clutch shoes, which are driven by the engine, keep trying to move the gummed-up clutch housing, because the engine’s power is enough to overcome some of the friction.  The result is that the shoes slip uselessly inside the housing.

     Over time, continued slippage will cause the clutch shoes’ high friction lining to wear away.  Once the lining is gone the clutch shoes will slip excessively, even when the gasoline powered tool is being employed to perform the lightest task.  That’s because slipping prevents a good portion of the engine’s power from being transmitted to the cutting head.

     That’s it for our series on centrifugal clutches.  Next we’ll be discussing transistors, how they’re used in electronic controls to switch things on and off and perform other functions. 

____________________________________________

Mechanical Power Transmission – The Centrifugal Clutch and Friction

Sunday, May 20th, 2012

     I got my first 10-speed bike when I was in high school.  It was nice, except for one nasty hangup, the brakes were always going out of adjustment.  Once it did this at the worst of times, when I was going down a steep hill.  I squeezed hard on the brake handles, and nothing happened.  The bike started to go out of control in its ascent down the hill, and in desperation I took my feet off the pedals and pressed the soles of my shoes as hard as I could into the road surface.  To my relief my emergency measure was effective.  The harder I pressed into the pavement, the less my shoes slipped, and the more the bike slowed down.  I had good rubber treads on the sneakers I was wearing that day, and the friction between the soles of my shoes and the surface of the pavement was strong enough to stop my runaway descent.  Something very similar occurs during the operation of a centrifugal clutch.

     If you recall from previous articles in this series, when the clutch mechanism spins faster than engine idle speed, the centrifugal force acting upon the clutch shoes overcomes the tension in the springs.  This causes the clutch shoes to make contact with the clutch housing.  But although there is contact, the clutch shoes will initially slip somewhat.  That is, the clutch housing and cutter head won’t spin at exactly the same speed when a faster spin is first employed, although the slip between the clutch shoes and housing decreases as engine speed increases. 

     Faster speed means there’s more centrifugal force at play, forcing the shoes harder against the drum of the clutch housing.  The increase in centrifugal force makes the shoes move tighter and tighter against the housing, and this causes an increase in friction.   Eventually the engine speed will increase to full throttle, the point where the shoes are pressed into the housing so hard there is no more slip.  The cutter head will then turn at the same rate as the engine, and the engine’s power will be fully transmitted to the cutter head, allowing you to trim grass effectively.

     Friction is a double edged sword.  On the one hand it reduces slip between the clutch shoes and clutch housing.  On the other, the friction between the slipping shoes and clutch housing generates a lot of heat, particularly if the grass trimmer is cutting thick grass.  We’ll see how that heat impacts the clutch mechanism components next week. 

____________________________________________

centrifugal clutch friction

 

Mechanical Power Transmission – The Centrifugal Clutch in Operation

Sunday, April 22nd, 2012
     Just the other day I unexpectedly experienced the effects of centrifugal force while  driving home from the grocery store.  The checker had packed my entire order into one bag, making it top heavy.  Then en route someone cut me off at an intersection, and I had to make a sharp turn to avoid a crash.  During this maneuver centrifugal force came into play, forcing my grocery bag out of its centered position on the front seat next to me.  It lurched into the passenger’s door, fell over, and spilled its contents onto the floor.  Fortunately the eggs didn’t get smashed.

     In previous articles we identified the component parts of a centrifugal clutch mechanism and learned how centrifugal force makes objects spinning in a circular path about a fixed point move outward.  We can now explore what happens when we couple a centrifugal clutch mechanism to the engine of a grass trimmer.

     Figure 1 depicts the spinning clutch mechanism of a gas engine when it’s just been started and is operating at a slow idle speed.

centrifugal clutch mechanism

Figure 1

 

     Like the red ball in my previous article on centrifugal force, the blue centrifugal clutch shoes each have a mass m.  They spin around a fixed point P, situated at the center of the yellow engine shaft coupling.  Point P is located a distance r from the center of each shoe.  The shoes in motion have a tangential velocity V, and in accordance with Sir Isaac Newton’s Law of Centrifugal Force, the force Fc acts upon each shoe, causing them to want to pull out from the center of the mechanism, away from the fixed point.  Since idle speed is rather slow, however, the centrifugal force exerted upon the shoes isn’t strong enough to overcome the tension of the two springs and the coils connecting them remain coiled, holding the shoes tightly in position on the green boss.

     So what happens when we press the throttle trigger on the gas engine and cause the engine to speed up?  See Figure 2.

clutch shoes

Figure 2

 

     Figure 2 shows the clutch mechanism spinning at an increased velocity.  The tangential velocity V increases, and according to Newton’s law, the centrifugal force Fc acting on the clutch shoes increases as well.  The force is so strong that it overcomes the tension in the springs and they extend.  The clutch shoes are caused to move out and away from fixed point P, as well as from each other, traveling along the ends of the boss.

     When we remove our finger from the throttle trigger, the engine will slow down and return to idle speed.  The centrifugal force will decrease and the springs will pull the shoes back towards fixed point P.  The mechanism will return to its previous state, as shown in Figure 1.

     Next time we’ll insert the centrifugal clutch mechanism into the clutch housing to see how mechanical power is transmitted from the engine to the cutter head in our grass trimmer.

____________________________________________

 

Mechanical Power Transmission – Centrifugal Force and Centrifugal Clutches

Monday, April 9th, 2012
     I’m not a big fan of amusement parks.  The first time I rode on a Tilt-A-Whirl I was caught off guard and flung onto my side by the centrifugal force acting upon my body, the lower half of which was constrained by a seat belt so I wouldn’t be catapulted out during the ride.  To make matters worse, the centrifugal force started to force the lunch I’d made the mistake of eating just before back up my throat.  It was a very unpleasant experience to say the least.

     Centrifugal force is an interesting phenomenon, and its principles are involved in the operation of a centrifugal clutch, which we’ll see later.  For now, let’s get a basic understanding of what it’s all about, thanks to the discoveries of Sir Isaac Newton in the late 17th Century.

 Centrifugal Force

Figure 1

 

     Figure 1 shows a red ball, whose mass we’ll notate m, attached to a string, the other end of which is attached to a fixed point, such as if you held it taught between your fingers.  If you’re in a playful mood, you might enjoy twirling the ball above your head on its string.  The distance between the center of the ball and the fixed point is labeled r, which stands for the radius of the circular path traveled by the ball as it twirls around the fixed point.   The speed at which the ball travels through the air is called its straight line velocity, or tangential velocity in scientific-speak, and it is generally notated as a V.  The centrifugal force, or Fc, that is exerted upon the ball as it whirls around your head is, Sir Isaac tells us, measured by the equation:

Fc = mV2/r

     Centrifugal force in the simplest of terms is an outward-pushing force that pulls objects in motion away from the point about which they’re rotating.  Let’s hold as fact that if m and r don’t change, then Newton’s equation tells us that the centrifugal force exerted upon the object in motion increases by the square of the velocity, or speed, of the ball.  In other words, the faster the ball moves as you spin it around your head on the string, the harder the centrifugal force that acts upon it.  As you spin the ball faster and faster, it will pull outward more and more strenuously, exerting ever greater resistance upon the string you hold between your fingers.

     Now suppose we replace the string in this example with a spring as shown in Figure 2. 

centrifugal force clutch spring

Figure 2

 

     Why a spring?  Because that’s what’s used within a centrifugal clutch.  Just as with the string, the ball’s velocity increases as you increase rotation speed around the fixed point, and the centrifugal force acting upon its mass by the spinning action increases as well.  The spring expands, extending further and further out from its beginning position of attachment to the fixed point, your fingers.  As velocity decreases, the spring will retract, eventually returning to its original coil size.  This extending and retracting action is the major mechanism at play within a centrifugal clutch.

     Next time we’ll explore a centrifugal clutch mechanism in more depth to observe its behavior relative to its spring under the influence of centrifugal force.

____________________________________________