Posts Tagged ‘food processing equipment design’

Food Manufacturing Challenges – HACCP Design Principle No. 5

Saturday, November 12th, 2011
     Picture yourself on a highway, it’s dark out, the wind is blowing fiercely, and you’re unable to see that the pavement is accumulating icy patches.  You hit one, and your car veers out of control.  Luckily you drive one of the new generation of “smart” vehicles.  Wheel sensors detect your predicament and immediately initiate a sequence of events to correct the situation and bring your vehicle back into control.

     Corrective measures need to be taken in many situations when things go awry, whether they be computer-generated or human-generated corrections, and food manufacturing facilities are not exempt from the process.  Let’s look at how this applies within HACCP Design Principle No. 5. 

     Principle 5:  Establish corrective actions. – Simply put, when an established critical limit at a designated critical control point (CCP) has been found not to be functioning as intended, thereby exposing consumers to potential food safety issues, design engineers must enact corrective measures to resolve the issue as soon as possible.   

     Let’s return to the example set out in our last article, where we discussed HACCP Design Principle 4.  An engineering manager has discovered a problem with the lower critical limits established by her design engineer’s software logic as it concerns a CCP established with regard to cooker temperature.  The time and temperature in the logic create a hazardous situation by not taking into account that larger cuts of meat require more cooking time, resulting in them being undercooked. 

     Fortunately, the engineering manager’s diligent and ongoing day-to-day monitoring has alerted her to the error.  She immediately provides feedback about it to the design engineer, who makes corrections to the software logic.

     Problem solved, and all is working well within the food manufacturing plant, right?  Yes, but we’re not finished. We have to make sure that a mechanism is set in place to ensure that HACCP Principles 1 through 5 are being followed and that they are actually working to protect consumers from potential food contamination hazards.

     Next time we’ll take a look at the last of the HACCP Design Principles, No. 6, which concerns itself with maintenance and housekeeping issues.

____________________________________________

Food Manufacturing Challenges – HACCP Design Principle No. 4

Sunday, November 6th, 2011
     Imagine going on a diet and not having a scale to check your progress, or going to the doctor and not having your temperature taken.  Feedback is important in our daily lives, and industry benefits by it, too.

      Generally speaking, feedback, or monitoring, is a tool that provides relevant information on a timely basis as to whether things are working as they were intended to.   It’s an indispensable tool within the food manufacturing industry.  Without it, entire plants could be erected exposing workers to injury and consumers to bacteria-laden products.  It’s just plain common sense to monitor activities all along the way, starting with the design process.  Now let’s see how monitoring is applied in HACCP Design Principle No. 4.

     Principle 4:  Establish critical control point monitoring requirements. – Monitoring activities are necessary to ensure that the critical limits established at each critical control point (CCP) established under Principle 3 discussed last week are working as intended.  In other words, if the engineer identifies significant risks in the design of a piece of food processing equipment and establishes critical limits at CCPs to eliminate the risk, then the CCPs must be monitored to see if the risk has actually been eliminated.

     Monitoring can and should be performed in food manufacturing plants by a variety of personnel, including design engineers, the manager of the engineering department, production line workers, maintenance workers, and quality control inspectors.  For example, engineering department procedures in a food manufacturing plant should require the engineering manager to monitor CCPs established by the staff during the design of food processing equipment and production lines.  Monitoring would include reviewing the design engineer’s plans, checking things like assumptions made concerning processes, calculations, material selections, and proposed physical dimensions.

     In short, monitoring should be a part of nearly every process, starting with the review of design documents, mechanical and electrical drawings, validation test data for machine prototypes, and technical specifications for mechanical and electrical components.  This monitoring would be conducted by the engineering manager during all phases of the design process and before the finished equipment is turned over to the production department to start production. 

     To illustrate, suppose the engineering manager is reviewing the logic in a programmable controller for a cooker on a production line.  She discovers a problem with the lower critical limits established by her engineer at a CCP in the design of a cooker temperature control loop.  You see, the time and temperature in the logic is sufficient to thoroughly cook smaller cuts of meat in most of the products that will be made on the line, however the larger cuts will be undercooked.  The time and temperature settings within the logic are insufficient to account for the difference.  

     This situation illustrates the fact that monitoring does no good unless feedback is provided with immediacy.  In our example, the design engineer who first established the CCP and the critical limits was not informed in a timely manner of the difference in cooking times that different size meats would require, resulting in the writing of erroneous software logic.  Fortunately, continued monitoring by the engineering manager caught the error, leading her to provide feedback about it to the design engineer, who can then make the necessary corrections to the software.

     Next week we’ll see what design engineers do with the feedback they’ve received, as seen through the eyes of HACCP Principle 5, covering the establishment of corrective actions. 
____________________________________________

Food Manufacturing Challenges – HACCP Design Principle No. 1

Sunday, October 16th, 2011
     Imagine a doctor not washing his hands in between baby deliveries.  Unbelievable but true, this was a widespread practice up until last century when infections, followed by death of newborns, was an all-too common occurrence in hospitals across the United States.  It took an observant nurse to put two and two together after watching many physicians go from delivery room to delivery room, mother to mother, without washing their hands.  Once hand washing in between deliveries was made mandatory, the incidence of infection and death in newborns plummeted.

      Why wasn’t this simple and common sense solution instituted earlier?  Was it ignorance, negligence, laziness, or a combination thereof that kept doctors from washing up?  Whatever the root cause of this ridiculous oversight, it remains a fact of history.  Common sense was finally employed, and babies’ lives saved.

     The same common sense is at play in the development of the FDA’s Hazard Analysis Critical Control Point (HACCP) policy, which was developed to ensure the safe production of commercial food products.  Like the observant nurse who played watchdog to doctors’ poor hygiene practices and became the catalyst for improved hospital procedures set in place and remaining until today, HACCP policy results in a proactive strategy where hazards are identified, assessed, and then control measures developed to prevent, reduce, and eliminate potential hazards.

     In this article, we’ll begin to explore how engineers design food processing equipment and production lines in accordance with the seven HACCP principles.  You will note that here, once again, the execution of common sense can solve many problems.

     Principle 1:  Conduct a hazard analysis. – Those involved in designing food processing equipment and production lines must proactively analyze designs to identify potential food safety hazards.  If the hazard analysis reveals contaminants are likely to find their way into food products, then preventive measures are put in place in the form of design revisions.

     For example, suppose a food processing machine is designed and hazard analysis reveals that food can accumulate in areas where cleaning is difficult or impossible.  This accumulation will rot with time, and the bacteria-laden glop can fall onto uncontaminated food passing through production lines.

     As another example, a piece of metal tooling may have been designed with the intent to form food products into a certain shape, but hazard analysis reveals that the tooling is too fragile and cannot withstand the repeated forces imposed on it by the mass production process.  There is a strong likelihood that small metal parts can break off and enter the food on the line.

     Next time we’ll move on to HACCP Principle 2 and see how design engineers control problems identified during the hazard analysis performed pursuant to Principle 1.

____________________________________________