Posts Tagged ‘condensing’

Superheater Construction and Function

Sunday, September 15th, 2013

      Power plants produce electrical energy for consumers to use, whether at home or for business, that’s obvious enough, but did you know that in order to produce that electrical energy they must first be supplied with heat energy?   The heat energy that power plants crave comes from a fuel source, such as coal, oil, or natural gas, by way of a burning process.   Once the heat energy is released from the coal through burning, it’s transported into a steam turbine by way of superheated steam, which is supplied to it by a piece of equipment named, appropriately enough, a superheater.

      So what is a superheater and how does it function?   Take a look at the illustration below.

Electric Utility Power Plant Superheater

      The superheater looks like a W.   It’s actually a cascading array of bent steam pipe, situated above a source of open flames which are produced by the burning of a fuel source.   A photo of an actual superheater is shown below.

Power Plant Expert Witness

      So how many bends are in a superheater?   Enough to fill the needs of the particular power plant it is supplying energy to.   Since all power plants are designed differently, we’ll keep things in general terms.

      The many bends in the superheater’s pipes form a circuitous path for steam to flow as it follows a path from the boiler to the steam turbine.   The superheater’s unique construction gives the steam flowing through it maximum exposure to heat.   In other words, the bends increase the time it takes for the steam to flow through the superheater.   The more bends that are present, the longer the steam will be exposed to the flame’s heat energy, and the longer that exposure, the more heat energy that is absorbed by the steam.

      Superheating routinely results in temperatures in excess of 1000°F.   This superheated steam is laden with abundant heat energy which will keep the steam turbine spinning and the generator operating.   The net result is millions of watts of electrical power.

      As we learned in a previous blog, the superheater is designed to provide the turbine with sensible heat energy to prevent steam from completely desuperheating, which would result in dangerous condensation inside the turbine.

      The newly added superheater is a major improvement to a power plant’s water-to-steam cycle, but there’s still plenty of waste and inefficiency in the system, which we’ll discuss next week.

________________________________________

Superheating, Part 2

Sunday, August 25th, 2013

      Last time we added a piece of equipment called a superheater, positioned between the boiler and steam turbine, to our basic electric utility power plant steam and water cycle.   Its addition enables a greater and more consistent supply of heat energy to the steam which powers the turbine.   How much more?   Let’s look at Figure 1 to get an idea.

Coal Power Plant Engineering Expert Witness

Figure 1

 

      You may have noticed that our illustration lacks numerical representation.   That’s because power plants are designed differently, depending on fuels used and power output required.   So unless we’re talking about a particular power plant, number values would be impractical.   For example, I could specify a boiling point of 596°F at 1,500 pounds per square inch (PSI), and a superheater outlet temperature of 1,050°F at 1,200PSI, and I could make note of esoteric things like enthalpy (British Thermal Units per pound mass) values on the Heat Energy axis.    But to facilitate our discussion we’ll keep things simple and focus on the general process.

      Figure 1 shows in phase D the additional heat energy being added to the steam, thanks to the superheater.   This is significantly more than had been added by the boiler alone, as represented by phase C.   The turbine consumes heat energy added in phases C and D and converts it into mechanical energy to drive the generator, resulting in electrical energy being provided to consumers in the most energy efficient way possible.

      But increasing power output and efficiency isn’t the superheater’s only job.   The heat it adds during phase D ensures the turbine’s safe operation when it’s cranking at full capacity, as represented by the superheated steam zones of phases C and D.

      Next week we’ll discover how the superheater prevents a destructive process known as condensing from occurring inside the turbine.

________________________________________