Posts Tagged ‘120 VAC’

Transistors – Voltage Regulation Part VIII

Sunday, September 9th, 2012
     Back in the early 1970s my dad, a notorious tightwad, coughed up several hundred dollars to buy his first portable color television.  That was a small fortune back then.  The TV was massive, standing at 24 inches wide, 18 inches high, and 24 inches deep, and weighing in at about 50 pounds.  I think the only thing that made this behemoth “portable” was the fact that it had a carrying handle on top.

     A major reason for our old TV being so big and clunky was of course due to limitations in technology of the time.  Many large, heavy, and expensive electronic components were needed to make it work, requiring a lot of space for the circuitry.  By comparison, modern flat screen televisions and other electronic devices are small and compact because advances in technology enable them to work with far fewer electronic components.  These components are also smaller, lighter, and cheaper.

     Last time we looked at the components of a simple unregulated power supply to see how it converts 120 volts alternating current (VAC) to 12 volts direct current (VDC).  We discovered that the output voltage of the supply is totally dependent on the design of the transformer, because the transformer in our example can only produce one voltage, 12 VDC.  This of course limits the supply’s usefulness in that it is unable to power multiple electronic devices requiring two or more voltages, such as we’ll be discussing a bit further down.

     Now let’s illustrate this power supply limitation by revisiting our microprocessor control circuit example which we introduced in a previous article in this series on transistors. 

microprocessor control

Figure 1

 

     In Figure 1 we have to decide what kind of power to supply to the circuit, but we have a problem.  Sure, the unregulated power supply that we just discussed is up to the task of providing the 12 VDC needed to supply power for the buzzer, light, and electric relay.  But let’s not forget about powering the microprocessor chip.  It needs only 5 VDC to operate and will get damaged and malfunction on the higher 12 VDC the current power supply provides.  Our power supply just isn’t equipped to provide the two voltages required by the circuit.

     We could try and get around this problem by adding a second unregulated power supply with a transformer designed to convert 120 VAC to 5 VAC.  But, reminiscent of the circuitry in my dad’s clunky old portable color TV, the second power supply would require substantially more space in order to accommodate an additional transformer, diode bridge, and capacitor.  Another thing to consider is that transformers aren’t cheap, and they tend to have some heft to them due to their iron cores, so more cost and weight would be added to the circuit as well.  For these reasons the use of a second power supply is a poor option.

     Next time we’ll look at how adding a transistor voltage regulator circuit to the supply results in cost, size, and weight savings.  It also results in a more flexible and dependable output voltage.

____________________________________________

Transistors – Digital Control Interface, Part IV

Monday, July 9th, 2012
     The Olympic Torch relay, soon to culminate in London, is the grand daddy of all relays, starting in one country, traversing many others, then ending its journey at the site of the Olympic Games.  It passes through many athletes’ hands while on its journey, its final purpose being to light the Olympic Flame.  Less glamorous, though still useful, is the relay race that often takes place within digital controls.

      Last time we looked at my design solution for the control of a microprocessor controlled medical x-ray film developing machine, where a field effect transistor (FET) acted as a digital control interface between a 5 volt direct current (VDC) microprocessor and a 12 VDC buzzer.  Well, controlling the buzzer wasn’t the only function of the microprocessor.  It also had to control a 120 volt alternating current (VAC) drive motor, the purpose of which was to move x-ray film through a series of processes within the machine.  Yet another requirement was that the machine’s drive motor run 40 minutes upon activation by a start button, then shut off.

     One of the challenges presented by this specification was that an FET standing alone is only suited to control direct current devices like the buzzer, but not alternating current devices like electric motors.  Direct current flows in one direction only when traveling through wire, and since an FET can only pass current in one direction it is the perfect match for those applications.  

     Now, as the name would imply, alternating current flow alternates, that is, it reverses direction and varies in intensity many times each second.  This is a scenario that FETs are not equipped to handle because they can’t deal with reverse flow.  This meant that, for the purpose of my developing machine, I could not use an FET to directly control the 120 VAC motor.  Now let’s take a look at Figure 1 to get a basic look at how I solved the problem.

microprocessor electric relay control

Figure 1 

 

     Figure 1 shows not one, but two green FET’s, each branching off from the microprocessor chip.  We’ll call them FET 1 and FET 2.  If you recall from last time, the buzzer works on 12 VDC, so FET 1 works well as a direct interface between it and the microprocessor chip.  But in the case of FET 2 we need an intermediary device to handle the alternating current motor.  That device is a 12 VDC electric relay.

     In an earlier blog series on industrial controls I discussed how electric relays use electromagnets to power light bulbs and motors on and off in response to someone pressing a button on a control panel.  We have very much the same mechanics at play in our developing machine.  The relay will power the motor on and off in response to the computer program running within the 5 VDC microprocessor, a programming sequence that is initiated by someone pressing a button. 

     To get the motor control to work in the machine, the gate (G) of FET 2 is connected to another output lead on the microprocessor.  We’ll call that Output Lead 2.  Then, the source (S) of FET 2 is connected to the wire coil in the relay.  To tap into the power source for the relay, the drain (D) of FET 2 is connected to the 12 VDC supply.   Finally, the other end of the relay coil is connected to electrical ground.

     Next time we’ll activate the pushbutton and see how the control initiative passes along a path in a manner reminiscent of the flame in an Olympic Torch relay, but here it passes between the microprocessor, the FET and electrical relay, culminating in power to the drive motor.

 ____________________________________________