Posts Tagged ‘diode bridge’

Transistors – Voltage Regulation Part VIII

Sunday, September 9th, 2012
     Back in the early 1970s my dad, a notorious tightwad, coughed up several hundred dollars to buy his first portable color television.  That was a small fortune back then.  The TV was massive, standing at 24 inches wide, 18 inches high, and 24 inches deep, and weighing in at about 50 pounds.  I think the only thing that made this behemoth “portable” was the fact that it had a carrying handle on top.

     A major reason for our old TV being so big and clunky was of course due to limitations in technology of the time.  Many large, heavy, and expensive electronic components were needed to make it work, requiring a lot of space for the circuitry.  By comparison, modern flat screen televisions and other electronic devices are small and compact because advances in technology enable them to work with far fewer electronic components.  These components are also smaller, lighter, and cheaper.

     Last time we looked at the components of a simple unregulated power supply to see how it converts 120 volts alternating current (VAC) to 12 volts direct current (VDC).  We discovered that the output voltage of the supply is totally dependent on the design of the transformer, because the transformer in our example can only produce one voltage, 12 VDC.  This of course limits the supply’s usefulness in that it is unable to power multiple electronic devices requiring two or more voltages, such as we’ll be discussing a bit further down.

     Now let’s illustrate this power supply limitation by revisiting our microprocessor control circuit example which we introduced in a previous article in this series on transistors. 

microprocessor control

Figure 1


     In Figure 1 we have to decide what kind of power to supply to the circuit, but we have a problem.  Sure, the unregulated power supply that we just discussed is up to the task of providing the 12 VDC needed to supply power for the buzzer, light, and electric relay.  But let’s not forget about powering the microprocessor chip.  It needs only 5 VDC to operate and will get damaged and malfunction on the higher 12 VDC the current power supply provides.  Our power supply just isn’t equipped to provide the two voltages required by the circuit.

     We could try and get around this problem by adding a second unregulated power supply with a transformer designed to convert 120 VAC to 5 VAC.  But, reminiscent of the circuitry in my dad’s clunky old portable color TV, the second power supply would require substantially more space in order to accommodate an additional transformer, diode bridge, and capacitor.  Another thing to consider is that transformers aren’t cheap, and they tend to have some heft to them due to their iron cores, so more cost and weight would be added to the circuit as well.  For these reasons the use of a second power supply is a poor option.

     Next time we’ll look at how adding a transistor voltage regulator circuit to the supply results in cost, size, and weight savings.  It also results in a more flexible and dependable output voltage.


Transistors – Voltage Regulation Part VII

Monday, September 3rd, 2012
     Back when television had barely escaped the confines of black and white transmission there was a men’s clothing store commercial whose slogan still sticks in my mind, “Large and small, we fit them all.”  It’s a nice concept, but unfortunately the same doesn’t always apply to electronic power supplies.

     Last time we learned that when the electrical resistance changes on an unregulated power supply its output voltage changes proportionately.  This makes it unsuitable for powering devices like microprocessor chips, which require an unchanging voltage to operate properly.  Now let’s look at another shortcoming of unregulated power supplies, that being how one supply can’t fit both large and small voltage requirements.

     Figure 1 shows the components of a simple unregulated power supply. 

unregulated power supply electronics

Figure 1


     The diagram illustrates the voltage changes taking place as electric current passes through the supply’s four components, which ultimately results in the conversion of 120 volts alternating current (VAC) into 12 volts direct current (VDC).

     First the transformer converts the 120 VAC from the wall outlet to the 12 volts required by most electronic devices.  These voltages are shown at Points A and B.  The voltage being put out by the transformer results in waves of energy which alternate between a positive maximum value, then to zero, and finally to a maximum negative value.

     But we want our power supply to produce 12 VDC.  By VDC, I mean voltage that never falls to zero and stays at a positive 12 volts direct current consistently.  This is when the diode bridge and capacitor come into play.  The diode bridge consists of four electronic components, the diodes, which are connected together to form a bridge and uses semiconductor technology to transform negative voltage from the transformer into positive.  The result is a series of 12 volt peaks as shown at Point C.

     But we still have the problem of zero voltage gaps between each peak.  You see, over time the voltage at Point C of Figure 1 keeps fluctuating between 0 volts and positive 12 volts, and this is not suitable to power most electronics, which require a steady VDC current.

     We can get around this problem by feeding voltage from the diode bridge into the capacitor.  When we do that, we eliminate the zero voltage gaps between the peaks.  This happens when the capacitor charges up with electrical energy as the voltage from the diode bridge nears the top of a peak.  Then, as voltage begins its dive back to zero the capacitor discharges its electrical energy to fill in the gaps between peaks.  In other words it acts as a kind of reserve battery.  The result is the rippled voltage pattern observed at Point D.  With the current gaps filled in, the voltage is now a steady VDC.

     The output voltage of the unregulated power supply is totally dependant on the design of the transformer, which in this case is designed to convert 120 volts into 12 volts.  This limits the power supply’s usefulness because it can only supply one output voltage, that being 12 VDC.  This voltage may be insufficient for some electronics, like those often found in microprocessor controlled devices where voltages can range between 1.5 and 24 volts.

     Next time we’ll illustrate this limitation by revisiting our microprocessor control circuit example and trying to fit this unregulated power supply into it.


Transistors – Voltage Regulation

Sunday, July 22nd, 2012
     Electrical voltage flow and water flow have a lot in common.  They’re both affected by fluctuations in supply, fluctuations which can adversely impact both performance and equipment integrity.  Take for example a sprinkler that fails to cover a designated section of lawn due to heavy neighborhood demand.  Everybody wants to water on the weekend when it’s been 90 degrees all week, and low water pressure is the result.  There are times when it’s hard to get a glass of water.  By contrast in the winter months, when water demands tend to be lower, water supplies are plentiful.  This scenario of varying water pressure is analogous to what sometimes occurs within electric circuits.

     In my previous blog article on wall warts, I described the operation of a simple power supply consisting of a transformer, diode bridge, and capacitor.  Together, these components converted 120 volts alternating current (VAC) to 12 volts direct current (VDC).  The wall wart power supply is fine for many applications, however it is unregulated, meaning if there are any sudden surges in power, such as spikes or dips caused by lightning strikes or other disturbances on the electric utility system, there could be problems.

     Take for example a power supply that is used in conjunction with sensitive digital logic chips, like the one used in my x-ray film processor design shown in my last blog article.  These chips are designed to run optimally on a constant voltage, like 5 VDC, and when that doesn’t happen input signals can fail to register with the computer program and cause a variety of problems, such as output signals turning on and off at will.  In the film processor the drive motor may start at the wrong time or get stuck in an on modality.  If power surges are high enough, microprocessor chips can get damaged, compromising the entire working unit.

     The output voltage of an unregulated power supply can also vary in response to power demand, just as when sprinklers don’t have sufficient water flow to cover a section of lawn.  Demand for power can change within a circuit when electrical components like relays, lights, and buzzers are turned on and off by digital logic chips.

     Next time we’ll take a look at a basic concept of electrical engineering known as “Ohm’s Law” and how it governs the variable output voltage response of unregulated power supplies.


Transistors – Digital Control Interface, Part II

Sunday, June 24th, 2012
     Not too long ago I was retained as an engineering expert to testify on behalf of a plaintiff who owned a sports bar.  The place was filled with flat screen televisions that were plugged into 120 volt alternating current (VAC) wall outlets.  To make a long story short, the electric utility wires that fed power to the bar were hit by a passing vehicle, causing the voltage in the outlets to increase well beyond what the electronics in the televisions could handle.  The delicate electronics were not suited to be connected with the high voltage that suddenly surged through them as a result of the hit, and they overloaded and failed.

     Similarly, lower voltage microprocessor and digital logic chips are also not suited to directly connect with higher voltage devices like motors, electrical relays, and light bulbs.  An interface between the two is needed to keep the delicate electronic circuits in the chips from overloading and failing like the ill fated televisions in my client’s sports bar.  Let’s look now at how a field effect transistor (FET) acts as the interface between low and high voltages when put into operation within an industrial product.

     I was once asked to design an industrial product, a machine which developed medical x-ray films, utilizing a microprocessor chip to automate its operation.  The design requirements stated that the product be powered by a 120 VAC, such as that available through the nearest wall outlet.  In terms of functionality, upon startup the microprocessor chip was to be programmed to first perform a 40-minute warmup of the machine, then activate a 12 volt direct current (VDC) buzzer for two seconds, signaling that it was ready for use.  This sequence was to be initiated by a human operator depressing an activation button.

     The problem presented by this scenario was that the microprocessor chip manufacturer designed it to operate on a mere 5 VDC.  In additional, it was equipped with a digital output lead that was limited in functionality to either “on” or “off” and capable of only supplying either extreme of 0 VDC or 5 VDC, not the 12 VDC required by the buzzer.

     Figure 1 illustrates my solution to this voltage problem, although the diagram shown presents a highly simplified version of the end solution.

microprocessor control

Figure 1

     The illustration shows the initial power supplied at the upper left to be 120 VAC.  This then is converted down to 5 VDC and 12 VDC respectively by a power supply circuit. The 5 VDC powers the microprocessor chip and the 12 VDC powers the buzzer.  The conversion from high 120 VAC voltage to low 5 and 12 VDC voltage is accomplished through the use of a transformer, a diode bridge, and special transistors that regulate voltage.  Since this article is about FETs, we’ll discuss transistor power supplies in more depth in a future article.

     To make things a little easier to follow, the diagram in Figure 1 shows the microprocessor chip with only one input lead and one output lead.  In actuality a microprocessor chip can have dozens of input and output leads, as was the case in my solution.  The input leads collect information from sensors, switches, and other electrical components for processing and decision making by the computer program contained within the chip.  Output leads then send out commands in the form of digital signals that are either 0 VDC or 5 VDC.  In other words, off or on.  The net result is that these signals are turned off or on by the program’s decision making process.

     Figure 1 shows the input lead is connected to a pushbutton activated by a human.  The output lead is connected to the gate (G) of the FET.  The FET is shown in symbolic form in green. The FET drain (D) lead is connected to the buzzer and its source (S) lead terminates in connection to electrical ground to complete the electrical circuit.  Remember, electric current naturally likes to flow from the supply source to electrical ground within circuits, and our scenario is no exception.

     Next time we’ll see what happens when someone presses the button to put everything into action.


Further Inside the Wall Wart

Sunday, September 11th, 2011
     What do wall warts, aka AC wall adapters, and microwave ovens have in common?  Well, in previous blogs discussing microwaves, we saw how a microwave oven’s high voltage circuitry uses a transformer, diode, and capacitor to effectively convert AC voltage into DC voltage.  Wall warts do much the same thing and in very much the same way.

     If you will recall from our discussion of microwave ovens in the past few weeks, the transformer in a high voltage circuit transforms 120 volts into a much higher voltage, say 4000 volts, in order to make things work.  The diode and capacitor within both the microwave and the wall wart are key to facilitating this magical act, but in the wall wart it happens at a much lower voltage, about 12 volts.

     Last week we began exploring the inner workings of the wall wart.  We discovered how its transformer converts the 120 volts emanating from your average wall outlet to the 12 volts required by most electronic devices.  These voltages are shown at Points A and B in Figure 1 below.  The fact that the voltage being put out results in waves of energy which alternate between a positive maximum value, zero, and a negative maximum value, makes it an unacceptable power source for most electronic devices.  They require voltage that doesn’t alternate, and this is where the wall wart’s diode bridge and capacitor come into play.

Figure 1 – The Workings of the Wall Wart Transformer

     The wall wart’s diode bridge consists of four electronic components, namely the diodes, which are connected together.  This diode bridge goes a bit further than the single diode present in a microwave oven, because it doesn’t merely eliminate negative aspects of alternating voltage.  It actually transforms negative voltage into positive voltage.  The result is a series of 12 volt peaks as shown at Point C of Figure 1.  In fact, we end up with twice as many voltage peaks, and this is important, as you’ll see below.

     We still have the problem of zero voltage gaps to address.  You see, over time the voltage at Point C of Figure 1 keeps changing between 0 volts and positive 12 volts.  This can lead to problems, because many electronic devices require a consistent voltage of greater than zero to operate properly.  For example, a light emitting diode (LED) might develop an annoying flicker, or you might end up hearing an irritating hum while listening to the radio.  These annoyances are virtually eliminated by feeding voltage from the diode bridge into the capacitor, which gets rid of the zero voltage gaps between the voltage peaks.

     Like a microwave’s capacitor, the one within a wall wart charges up with electrical energy as the voltage from the diode bridge nears the top of a peak.  Then, as voltage begins its dive back to a zero value, the capacitor discharges its electrical energy to fill in the gaps between peaks.  The result is the rippled voltage pattern at Point D of Figure 1.  With the gaps filled in, the voltage is at, or close enough to, the 12 volts required to keep an electronic device operating properly when it is connected to the wall wart’s low voltage power cord.

     Well, that’s it for our look at the wall warts that power our myriad of electronic devices.  Next time we’ll switch to a totally topic and look at some of the basics of food manufacturing equipment design.


Inside The Wall Wart

Monday, September 5th, 2011

     What would a cop show be without a crime scene, or better yet the obligatory dissection at the morgue?  Forensic doctors performing autopsies have become commonplace, the clues they provide indispensable.  Forensic engineers such as myself do much of the same thing, working our way backwards through time by dissecting industrial equipment and consumer products left in the wake of fires, injuries, and deaths. 

     Let’s do some forensic dissecting now to see what’s in a wall wart and how it works.  The inside of a basic wall wart is shown in Figure 1.

Figure 1 – Inside The Wall Wart 

     You’ll note that a wall wart has four main components:  a transformer, diode bridge, capacitor, and a printed circuit board (PCB).  The PCB is constructed of plastic resin upon which is mounted copper strips.  This makes a rigid platform base upon which electronic components are attached, namely the transformer, diode bridge, and capacitor.  These components are soldered to the PCB, tying them together both mechanically and electrically.  Now let’s see how the components of the wall wart work together to change the 120 volts coming from your standard wall outlet into the 12 volts needed to power a typical electronic device.   We’ll use an instrument known as an oscilloscope to help us visualize what’s going on.   See Figure 2.

Figure 2 – The Workings of the Wall Wart Transformer

     What is depicted in the graph above is the oscilloscope’s ability to receive an electronic signal, measure it, graph it, and then display it on a screen.  This enables us to see how the signal changes over time.  At Point A, which represents the wall wart plugged into a wall outlet, the voltage alternates between positive 120 volts and negative 120 volts upon entering the wall wart, which will now act as a transformer.

     The wall wart transformer then does as its name suggests, it transforms the 120 volts coming from the outlet into the 12 volts shown at Point B.  You will note that this lower voltage also alternates between positive and negative values, just as the original 120 volts emanating from the wall outlet did.  In one of my earlier blogs I explained that transformers only work when the electricity passing through them alternates over time.  (Click here for a refresher: Transformers )   High voltage alternating electricity in one transformer coil creates magnetic fields that induce alternating electricity at a different voltage in a second transformer coil.  So when you put alternating voltage into the transformer, you get alternating voltage out.  But that’s not the end of the story.  Many electronic devices operate on voltage that doesn’t alternate.  What then?  Will our handy wall wart still be able to bridge the electrical gap to fill our needs?

     Next time we’ll see how the diode bridge and capacitor come into play to deal with the alternating voltage from the transformer in a manner eerily similar to a microwave oven’s high voltage circuit.