Posts Tagged ‘power supply’

Transistors – Digital Control Interface, Part II

Sunday, June 24th, 2012
     Not too long ago I was retained as an engineering expert to testify on behalf of a plaintiff who owned a sports bar.  The place was filled with flat screen televisions that were plugged into 120 volt alternating current (VAC) wall outlets.  To make a long story short, the electric utility wires that fed power to the bar were hit by a passing vehicle, causing the voltage in the outlets to increase well beyond what the electronics in the televisions could handle.  The delicate electronics were not suited to be connected with the high voltage that suddenly surged through them as a result of the hit, and they overloaded and failed.

     Similarly, lower voltage microprocessor and digital logic chips are also not suited to directly connect with higher voltage devices like motors, electrical relays, and light bulbs.  An interface between the two is needed to keep the delicate electronic circuits in the chips from overloading and failing like the ill fated televisions in my client’s sports bar.  Let’s look now at how a field effect transistor (FET) acts as the interface between low and high voltages when put into operation within an industrial product.

     I was once asked to design an industrial product, a machine which developed medical x-ray films, utilizing a microprocessor chip to automate its operation.  The design requirements stated that the product be powered by a 120 VAC, such as that available through the nearest wall outlet.  In terms of functionality, upon startup the microprocessor chip was to be programmed to first perform a 40-minute warmup of the machine, then activate a 12 volt direct current (VDC) buzzer for two seconds, signaling that it was ready for use.  This sequence was to be initiated by a human operator depressing an activation button.

     The problem presented by this scenario was that the microprocessor chip manufacturer designed it to operate on a mere 5 VDC.  In additional, it was equipped with a digital output lead that was limited in functionality to either “on” or “off” and capable of only supplying either extreme of 0 VDC or 5 VDC, not the 12 VDC required by the buzzer.

     Figure 1 illustrates my solution to this voltage problem, although the diagram shown presents a highly simplified version of the end solution.

microprocessor control

Figure 1

     The illustration shows the initial power supplied at the upper left to be 120 VAC.  This then is converted down to 5 VDC and 12 VDC respectively by a power supply circuit. The 5 VDC powers the microprocessor chip and the 12 VDC powers the buzzer.  The conversion from high 120 VAC voltage to low 5 and 12 VDC voltage is accomplished through the use of a transformer, a diode bridge, and special transistors that regulate voltage.  Since this article is about FETs, we’ll discuss transistor power supplies in more depth in a future article.

     To make things a little easier to follow, the diagram in Figure 1 shows the microprocessor chip with only one input lead and one output lead.  In actuality a microprocessor chip can have dozens of input and output leads, as was the case in my solution.  The input leads collect information from sensors, switches, and other electrical components for processing and decision making by the computer program contained within the chip.  Output leads then send out commands in the form of digital signals that are either 0 VDC or 5 VDC.  In other words, off or on.  The net result is that these signals are turned off or on by the program’s decision making process.

     Figure 1 shows the input lead is connected to a pushbutton activated by a human.  The output lead is connected to the gate (G) of the FET.  The FET is shown in symbolic form in green. The FET drain (D) lead is connected to the buzzer and its source (S) lead terminates in connection to electrical ground to complete the electrical circuit.  Remember, electric current naturally likes to flow from the supply source to electrical ground within circuits, and our scenario is no exception.

     Next time we’ll see what happens when someone presses the button to put everything into action.


Industrial Control Basics – Disconnect Switches

Sunday, March 25th, 2012
     Last week our kitchen ceiling fan and light combo decided to stop working.  We don’t like eating in the dark, so I was compelled to do some immediate troubleshooting.  As an engineer with training in the workings of electricity I have a great respect for it.  I’m well aware of potential hazards, and I took a necessary precaution before taking things apart and disconnecting wires.  I made the long haul down the stairs to the basement, opened the circuit breaker in the electrical panel, and disabled the flow of electricity to the kitchen.  My fears of potential electrocution having been eliminated, my only remaining fear was of tumbling off the ladder while servicing the fan.

     Just as I took the precaution to disconnect the power supply before performing electrical maintenance in my home, workers in industrial settings must do the same, and a chief player in those scenarios is the motor overload relay discussed last week.  It automatically shuts down electric motors when they become overheated.  Let’s revisit that example now.

Industrial Control System

Figure 1


     Our diagram in Figure 1 shows electric current flowing through the circuit by way of the red path.  Even if this line were shut down, current would continue to flow along the path, because there is no means to disconnect the entire control system from the hot and neutral lines supplying power to it, that is, it is missing disconnect switches.  Electric current will continue to pose a threat to workers were they to attempt a repair to the system.  Now let’s see how we can eliminate potential hazards on the line.

Disconnect Switches

Figure 2


     In Figure 2 there is an obvious absence of the color red, indicating the lack of current within the system.  We accomplished this with the addition of disconnect switches capable of isolating the motor control circuitry, thereby cutting off the hot and neutral lines of the electrical power supply and along with it the unencumbered flow of electricity.

    These switches are basically the same as those seen in earlier diagrams in our series on industrial controls, the difference here is that the two switches are tied together by an insulated mechanical link.  This link causes them to open and close at the same time.  The switches are opened and closed manually via a handle.  When the disconnect switches are both open electricity can’t flow and nothing can operate.  Under these conditions there is no risk of a worker coming along and accidentally starting the conveyor motor.

     To add yet another level of safety, disconnect switches are often tagged and locked once de-energized.  This prevents workers from mistakenly closing them and starting the conveyor while maintenance is being performed.  Brightly colored tags alert everyone that maintenance is taking place and the switches must not be closed.  The lock that performs this safety function is actually a padlock.  It’s inserted through a hole in the switch handle, making it impossible for anyone to flip the switch.  Tags and locks are usually placed on switches by maintenance personnel before repairs begin and are removed when work is completed.

     Now let’s see how our example control system looks in ladder diagram format.

Control System Ladder Diagram

Figure 3


     Figure 3 shows a ladder diagram that includes disconnect switches, an emergency stop button, and the motor overload relay contacts.  The insulated mechanical link between the two switches is represented by a dashed line.  Oddly enough, engineering convention has it that the motor overload relay heater is typically not shown in a ladder diagram, therefore it is not represented here.

     This wraps up our series on industrial control.  Next time we’ll begin a discussion on mechanical clutches and how they’re used to transmit power from gasoline engines to tools like chainsaws and grass trimmers.



Inside The Wall Wart

Monday, September 5th, 2011

     What would a cop show be without a crime scene, or better yet the obligatory dissection at the morgue?  Forensic doctors performing autopsies have become commonplace, the clues they provide indispensable.  Forensic engineers such as myself do much of the same thing, working our way backwards through time by dissecting industrial equipment and consumer products left in the wake of fires, injuries, and deaths. 

     Let’s do some forensic dissecting now to see what’s in a wall wart and how it works.  The inside of a basic wall wart is shown in Figure 1.

Figure 1 – Inside The Wall Wart 

     You’ll note that a wall wart has four main components:  a transformer, diode bridge, capacitor, and a printed circuit board (PCB).  The PCB is constructed of plastic resin upon which is mounted copper strips.  This makes a rigid platform base upon which electronic components are attached, namely the transformer, diode bridge, and capacitor.  These components are soldered to the PCB, tying them together both mechanically and electrically.  Now let’s see how the components of the wall wart work together to change the 120 volts coming from your standard wall outlet into the 12 volts needed to power a typical electronic device.   We’ll use an instrument known as an oscilloscope to help us visualize what’s going on.   See Figure 2.

Figure 2 – The Workings of the Wall Wart Transformer

     What is depicted in the graph above is the oscilloscope’s ability to receive an electronic signal, measure it, graph it, and then display it on a screen.  This enables us to see how the signal changes over time.  At Point A, which represents the wall wart plugged into a wall outlet, the voltage alternates between positive 120 volts and negative 120 volts upon entering the wall wart, which will now act as a transformer.

     The wall wart transformer then does as its name suggests, it transforms the 120 volts coming from the outlet into the 12 volts shown at Point B.  You will note that this lower voltage also alternates between positive and negative values, just as the original 120 volts emanating from the wall outlet did.  In one of my earlier blogs I explained that transformers only work when the electricity passing through them alternates over time.  (Click here for a refresher: Transformers )   High voltage alternating electricity in one transformer coil creates magnetic fields that induce alternating electricity at a different voltage in a second transformer coil.  So when you put alternating voltage into the transformer, you get alternating voltage out.  But that’s not the end of the story.  Many electronic devices operate on voltage that doesn’t alternate.  What then?  Will our handy wall wart still be able to bridge the electrical gap to fill our needs?

     Next time we’ll see how the diode bridge and capacitor come into play to deal with the alternating voltage from the transformer in a manner eerily similar to a microwave oven’s high voltage circuit.


Ever Had a Wall Wart?

Sunday, August 28th, 2011

     You might have had warts on your skin.  They’re formed by viruses making a new home.  If you’ve ever had one, you probably didn’t like it and found it hard to get rid of.

     Walls often have warts, too, although you probably didn’t identify them as such.  “Wall Wart” is engineering talk for the black plastic protrusions you often find attached to the exterior of a wall outlet in modern homes.  If you call them anything at all, it’s most likely “AC power adapters.”  A typical wall wart is shown in Figure 1.

Figure 1 – A Typical Wall Wart

     Wall warts provide a handy, portable and easy to use conversionary power source for small electronic devices, including lamps, small appliances, and various modern day electronics.  If you’re like me, you have lots of them scattered on the walls of your home and office.  Most people come to use them when a need arises, say you bought a scanner for your computer.  Beyond that they’re usually not given much thought, but today we’re going to explore them a bit.

     Suppose you’re an engineer and you’ve been asked to design an electronic product for household use.  The product only requires 12 volts of direct current (DC) to operate, but you know that the typical home is wired to supply 120 volts of alternating current (AC).  What can be done to rectify the discrepancy?  Well, there are two distinct choices.

     One of the choices is to design electronic circuitry capable of converting 120 volts AC into 12 volts DC, then place it inside the product.  But is this the best choice?  Not really.  It takes time to design custom circuitry, and doing so will add substantially to the design time and final cost of the product.  This is especially true if the circuitry is produced in small quantities.  Besides, if the electronic product is small, there may not be enough room inside to accommodate this type of circuitry.

     The smarter choice would be to buy a wall wart from another company that specializes in manufacturing them.  They’re produced in huge quantities, so the cost is low.  They also come in standard voltages, like 12 volts DC.  And because the wall wart is external to the product housing, space inside is no longer a concern.  It couldn’t be any easier or cost effective.  Just plug the wall wart into your home electrical outlet, then plug in the product’s 12 volt DC cord.  Done!

     Next time we’ll take a look at what’s going on inside your basic wall wart to see how it works.